Skip to main content
Log in

Numerical Investigation of a Dual Fuel Engine Fueled by Diesel-Acetylene and Biodiesel-Acetylene with Modified Piston Bowl Geometry

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Engine component design optimization plays an important role in enhancing the performance and emission characteristics of internal combustion engines. It has already been demonstrated that biodiesel-fueled compression ignition engines emit lower levels of emissions. The present work involves optimizing toroidal piston bowl geometry, in order to improve performance, emission, and combustion characteristics in dual fuel mode using diesel-acetylene and biodiesel-acetylene. The turbulence-creating tendency is utilized for optimizing piston bowl geometry to induce homogeneous mixture creation in the combustion chamber. To optimize the piston geometry physically is a time- and cost-consuming process, so the ANSYS-FLUENT CFD code is used to simulate the modified piston bowl geometries, where 1-, 1.5-, and 2-mm-diameter helical holes are placed in the surface of the crown to induce turbulence in the combustion chamber. Furthermore, 3, 4, and 5 holes are drilled in the crown surface for each diameter. The selection of optimum number of holes is carried out based on the analysis of turbulent intensity contours and the optimum hole diameter selection is based on the turbulent kinetic energy distribution. The results of the simulations show that the piston bowl of a diesel-acetylene fueled dual fuel engine with 5 holes of 1-mm-diameter piston geometry induces more turbulence than the other piston bowl geometries. Moreover, when compared to the other piston bowl geometries, the biodiesel-acetylene fueled dual fuel engine piston bowl with 5 holes of 2-mm-diameter piston geometry induces more turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

aTDC:

After top dead center

BTE:

Brake thermal efficiency

bTDC:

Before top dead center

CAD:

Computer-aided design

CI:

Compression ignition

CFD:

Computational fluid dynamics

CO:

Carbon monoxide

CNG:

Compressed Natural Gas

EFI:

End of the fuel injection

HC:

Hydrocarbon

HCC:

Hemispherical combustion chamber

IVC:

Intake valve close

IC:

Internal combustion

LPH:

Liters per hour

LPG:

Liquefied petroleum gas

LPM:

Liters per minute

MAB:

Microalgae biodiesel

NOx:

Oxides of nitrogen

RNG:

Re-Normalized Group

SCC:

Shallow depth combustion chamber

SFI:

Start of the fuel injection

SI:

Spark ignition

TCC:

Toroidal combustion chamber

TKE:

Turbulent kinetic energy

TDC:

Top dead center

:

Density

c d :

Nozzle's discharge coefficient

D d,stable :

Stable droplet diameter

D d :

Instantaneous droplet diameter

e :

Specific internal energy

k :

Turbulent kinetic energy

K c :

Form loss coefficient

K ε :

Empirical coefficient

L :

Hole length

p :

Pressure

q i :

Diffusive heat flux

Q H :

Heat source or sink per unit volume

S i :

Mass-distributed external force per unit mass

t b :

Characteristics time scale

U :

Average injection velocity

u :

Fluid velocity

ε :

Turbulence dissipation rate

μ t :

Turbulent viscosity

μ :

Dynamic viscosity

τ ij :

Viscous shear stress tensor

h :

Thermal enthalpy

References

  1. Akkoli, K.M.; Banapurmath, N.R.; Shivashimpi, M.M.; Soudagar, M.E.M.; Badruddin, I.A.; Alazwari, M.A.; Venu, H.: Effect of injection parameters and producer gas derived from redgram stalk on the performance and emission characteristics of a diesel engine. Alex. Eng. J. 60(3), 3133–3142 (2021)

    Article  Google Scholar 

  2. Bai, C.,; Gosman, A. D: Development of methodology for spray impingement simulation. SAE Trans., 550–568 (1995)

  3. Banapurmath, N.R.; Chandrashekar, T.K.; Soudagar, M.E.M.; Anqi, A.E.; Mujtaba, M.A.; Goodarzi, M.; Ali, M.A.: Effect of parameters behavior of simarouba methyl ester operated diesel engine. Energies 14(16), 4973 (2021)

    Article  Google Scholar 

  4. Bari, S.; Hossain, S.N.; Saad, I.: A review on improving airflow characteristics inside the combustion chamber of CI engines to improve the performance with higher viscous biofuels. Fuel 264, 116769 (2020)

    Article  Google Scholar 

  5. Chiodi, M.; Berner, H. J.; Bargende, M.: Investigation on mixture formation and combustion process in a CNG-engine by using a fast response 3D-CFD-simulation (No. 2004–01–3004). SAE Technical Paper, (2004)

  6. Dasrath, D.K.; Biwalkar, R.; Singh, S.; Northrop, W.F.: Bowl piston geometry as an alternative to enlarged crevice pistons for rapid compression machines. Proc. Combust. Inst. 38(4), 5723–5731 (2021)

    Article  Google Scholar 

  7. Deivajothi, P.; Manieniyan, V.; Sivaprakasam, S.: An impact of ethyl esters of groundnut acid oil (vegetable oil refinery waste) used as emerging fuel in DI diesel engine. Alex. Eng. J. 57(4), 2215–2223 (2018)

    Article  Google Scholar 

  8. Ganji, P.R.; Singh, R.N.; Raju, V.R.K.; Rao, S.S.: Design of piston bowl geometry for better combustion in direct-injection compression ignition engine. Sādhanā 43(6), 1–9 (2018)

    Article  MathSciNet  Google Scholar 

  9. Ge, S.; Brindhadevi, K.; Xia, C.; Elesawy, B.H.; Elfasakhany, A.; Unpaprom, Y.; Van Doan, H.: Egg shell catalyst and chicken waste biodiesel blends for improved performance, combustion and emission characteristics. Fuel 306, 121633 (2021)

    Article  Google Scholar 

  10. Han, Z.; Reitz, R.D.: Turbulence modeling of internal combustion engines using RNG κ-ε models. Combust. Sci. Technol. 106(4–6), 267–295 (1995)

    Article  Google Scholar 

  11. Hara, S.; Tsukahara, T.; Kawaguchi, Y.: Experimental investigation of streamwise velocity fluctuation based on the Reynolds-number dependency in turbulent viscoelastic-fluid flow. Int. J. Heat Fluid Flow 68, 281–289 (2017)

    Article  Google Scholar 

  12. Harari, P.A.; Banapurmath, N.R.; Yaliwal, V.S.; Soudagar, M.E.M.; Khan, T.Y.; Mujtaba, M.A.; EL-Seesy, A.I.: Experimental investigation on compression ignition engine powered with pentanol and thevetia peruviana methyl ester under reactivity controlled compression ignition mode of operation. Case Stud. Therm. Eng. 25, 100921 (2021)

    Article  Google Scholar 

  13. Heywood, J. G. Viscous incompressible fluids: mathematical theory (2006)

  14. Huh, K. Y. (1991). A phenomenological model of diesel spray atomization. In Proc. of The International Conf. on Multiphase Flows' 91-Tsukuba

  15. Jemni, M.A.; Kantchev, G.; Abid, M.S.: Influence of intake manifold design on in-cylinder flow and engine performances in a bus diesel engine converted to LPG gas fuelled, using CFD analyses and experimental investigations. Energy 36(5), 2701–2715 (2011)

    Article  Google Scholar 

  16. Karthickeyan, V.: Effect of combustion chamber bowl geometry modification on engine performance, combustion and emission characteristics of biodiesel fuelled diesel engine with its energy and exergy analysis. Energy 176, 830–852 (2019)

    Article  Google Scholar 

  17. Khan, H.; Soudagar, M.E.M.; Kumar, R.H.; Safaei, M.R.; Farooq, M.; Khidmatgar, A.; Taqui, S.N.: Effect of nano-graphene oxide and n-butanol fuel additives blended with diesel–Nigella sativa biodiesel fuel emulsion on diesel engine characteristics. Symmetry 12(6), 961 (2020)

    Article  Google Scholar 

  18. Khan, S.; Panua, R.; Bose, P.K.: Combined effects of piston bowl geometry and spray pattern on mixing, combustion and emissions of a diesel engine: a numerical approach. Fuel 225, 203–217 (2018)

    Article  Google Scholar 

  19. Kumar, M.V.; Babu, A.V.; Kumar, P.R.: Experimental investigation on the effects of diesel and mahua biodiesel blended fuel in direct injection diesel engine modified by nozzle orifice diameters. Renew. Energy 119, 388–399 (2018)

    Article  Google Scholar 

  20. Lakshmanan, T.; Nagarajan, G.: Experimental investigation on dual fuel operation of acetylene in a DI diesel engine. Fuel Process. Technol. 91(5), 496–503 (2010)

    Article  Google Scholar 

  21. Miles, P.; Megerle, M.; Hammer, J.; Nagel, Z.; Reitz, R. D.; Sick, V.: Late-cycle turbulence generation in swirl-supported, direct-injection diesel engines. SAE Trans. 1510–1529 (2002)

  22. Montoya, J.P.G.; Arrieta, A.A.A.: Effect of the turbulence intensity on knocking tendency in a SI engine with high compression ratio using biogas and blends with natural gas, propane and hydrogen. Int. J. Hydrogen Energy 44(33), 18532–18544 (2019)

    Article  Google Scholar 

  23. Muthuswamy, S.; Veerasigamani, M.:Impact of secondary fuel injector in various distance on direct injection diesel engine using acetylene-bio diesel in reactivity controlled compression ignition mode. Energy Sour. Part A Recovery Util. Environ. Effects, 1–15 (2020)

  24. Muthuswamy, S.; Veerasigamani, M; Comparative experimental analysis on dual fuel with biodiesel-acetylene in reactivity controlled compression ignition engine. Int. J. Ambient Energy, 1–12 (2021)

  25. Oni, B.A.; Sanni, S.E.; Daramola, M.; Olawepo, A.V.: Effects of oxy-acetylation on performance, combustion and emission characteristics of Botryococcus braunii microalgae biodiesel-fuelled CI engines. Fuel 296, 120675 (2021)

    Article  Google Scholar 

  26. Prabhakaran, P.; Ramesh, P.; Saravanan, C.G.; Loganathan, M.; Gunasekaran, E.J.: Experimental and numerical investigation of swirl enhancing grooves on the flow and combustion characteristics of a DI diesel engine. Energy 115, 1234–1245 (2016)

    Article  Google Scholar 

  27. Prabhakaran, P.; Saravanan, C.G.; Vallinayagam, R.; Vikneswaran, M.; Muthukumaran, N.; Ashok, K.: Investigation of swirl induced piston on the engine characteristics of a biodiesel fueled diesel engine. Fuel 279, 118503 (2020)

    Article  Google Scholar 

  28. Prasad, B.V.V.S.U.; Sharma, C.S.; Anand, T.N.C.; Ravikrishna, R.V.: High swirl-inducing piston bowls in small diesel engines for emission reduction. Appl. Energy 88(7), 2355–2367 (2011)

    Article  Google Scholar 

  29. Rahmanian, B.; Safaei, M.R.; Kazi, S.N.; Ahmadi, G.; Oztop, H.F.; Vafai, K.: Investigation of pollutant reduction by simulation of turbulent non-premixed pulverized coal combustion. Appl. Therm. Eng. 73(1), 1222–1235 (2014)

    Article  Google Scholar 

  30. Rajak, U.; Nashine, P.; Dasore, A.; Verma, T. N.: Utilization of renewable and sustainable microalgae biodiesel for reducing the engine emissions in a diesel engine. Fuel, 122498 (2021)

  31. Ranganatha Swamy, L.; Banapurmath, N. R.; Chandrashekar, T. K.; Soudagar, M. E. M.; Gul, M.; Nik-Ghazali, N. N.; Goodarzi, M.: Effect of injection timing and duration on the performance of diesel engine fueled with port injection of oxygenated fuels.Chem. Eng. Commun., 1–13 (2021)

  32. Reitz, R. D., & Diwakar, R. (1986). Effect of drop breakup on fuel sprays. SAE transactions, 218–227.

  33. Gavhane, R S.; Kate, A M.; Pawar, A.; Safaei, M. R., Soudagar M; Mujtaba Abbas M. E; Shahapurkar K M.: Effect of zinc oxide nano-additives and soybean biodiesel at varying loads and compression ratios on VCR diesel engine characteristics. Symmetry, 12(6), 1042 (2020)

  34. Sadeghinezhad, E.; Kazi, S.N.; Sadeghinejad, F.; Badarudin, A.; Mehrali, M.; Sadri, R.; Safaei, M.R.: A comprehensive literature review of bio-fuel performance in internal combustion engine and relevant costs involvement. Renew. Sustain. Energy Rev. 30, 29–44 (2014)

    Article  Google Scholar 

  35. Samir Naje, A,; Yuvarajan, D.; abed Al-Ridah, Z.; Sandeep, H.; Nagarajan, A: Ignition study of neat biodiesel in dual fueled research engine. Fuel, 281, 118673 (2020)

  36. Sateesh, K.A.; Yaliwal, V.S.; Soudagar, M.E.M.; Banapurmath, N.R.; Fayaz, H.; Safaei, M.R.; El-Seesy, A.I.: Utilization of biodiesel/Al2O3 nanoparticles for combustion behavior enhancement of a diesel engine operated on dual fuel mode. J. Therm. Anal. Calorim. 147(10), 5897–5911 (2022)

    Article  Google Scholar 

  37. Sener, R.; Yangaz, M.U.; Gul, M.Z.: Effects of injection strategy and combustion chamber modification on a single-cylinder diesel engine. Fuel 266, 117122 (2020)

    Article  Google Scholar 

  38. Sharma, S.; Sharma, D.; Soni, S. L.; & Singh, D.: Experimental investigation on spark-ignition (SI) engine fuelled with acetylene in dual-fuel mode. Int. J. Ambient Energy, 1–7 (2020)

  39. Shen, Z.; Wang, X.; Zhao, H.; Lin, Bo.; Shen, Y.; Yang, J.: Numerical investigation of natural gas-diesel dual-fuel engine with different piston geometries and radial clearances. Energy 220, 119706 (2021)

    Article  Google Scholar 

  40. Shi, Y.; Ge, H.W.; Reitz, R.D.: Computational optimization of internal combustion engines. Springer Science & Business Media (2011)

    Book  Google Scholar 

  41. Sonachalam, M.; Manieniyan, V.: Optimization of critical angle, distance and flow rate of secondary fuel injection in DI diesel engine using computational fluid dynamics. SN Appl. Sci. 3(1), 1–13 (2021)

    Article  Google Scholar 

  42. Sonachalam, M.; PaulPandian, P.; Manieniyan, V.: Emission reduction in diesel engine with acetylene gas and biodiesel using inlet manifold injection. Clean Technol. Environ. Policy 22(10), 2177–2191 (2020)

    Article  Google Scholar 

  43. Soudagar, M. E. M.; Afzal, A.; Safaei, M. R.; Manokar, A. M.; EL-Seesy, A. I.; Mujtaba, M. A.; Goodarzi, M: Investigation on the effect of cottonseed oil blended with different percentages of octanol and suspended MWCNT nanoparticles on diesel engine characteristics. J. Therm. Anal. Calorimetry, 1–18 (2020)

  44. Soudagar, M.E.M.; Khan, H.M.; Khan, T.M.; Razzaq, L.; Asif, T.; Mujtaba, M.A.; Safaei, M.R.: Experimental analysis of engine performance and exhaust pollutant on a single-cylinder diesel engine operated using moringa oleifera biodiesel. Appl. Sci. 11(15), 7071 (2021)

    Article  Google Scholar 

  45. Soudagar, M.E.M.; Mujtaba, M.A.; Safaei, M.R.; Afzal, A.; Ahmed, W.; Banapurmath, N.R.; Taqui, S.N.: Effect of Sr@ ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics. Energy 215, 119094 (2021)

    Article  Google Scholar 

  46. Sukumar, V.; Manieniyan, V.; Sivaprakasam, S.: Experimental studies on DI diesel engine fueled in sweet lime pyrolysis oil with biodiesel. Int. J. Appl. Eng. Res. 14(5), 1145–1150 (2019)

    Google Scholar 

  47. Sukumar, V.; Manieniyan, V.; Senthilkumar, R.; Sivaprakasam, S.: Production of bio oil from sweet lime empty fruit bunch by pyrolysis. Renew. Energy 146, 309–315 (2020)

    Article  Google Scholar 

  48. Uyumaz, A.: Experimental evaluation of linseed oil biodiesel/diesel fuel blends on combustion, performance and emission characteristics in a DI diesel engine. Fuel 267, 117150 (2020)

    Article  Google Scholar 

  49. Wategave, S.P.; Banapurmath, N.R.; Sawant, M.S.; Soudagar, M.E.M.; Mujtaba, M.A.; Afzal, A.; Sajjan, A.M.: Clean combustion and emissions strategy using reactivity controlled compression ignition (RCCI) mode engine powered with CNG-Karanja biodiesel. J. Taiwan Inst. Chem. Eng. 124, 116–131 (2021)

    Article  Google Scholar 

  50. Wise, D. M.; Olsen, D. B.; Kim, M: Development of a lean burn methane number measurement technique for alternative gaseous fuel evaluation. In Internal Combustion Engine Division Fall Technical Conference (Vol. 56109, p. V002T02A014). American Society of Mechanical Engineers (2013)

  51. Wulff, J. W.; Hulett, M.; Lee, S.: (2000).U.S. Patent No. 6,076,487. Washington, DC: U.S. Patent and Trademark Office

  52. Zhang, Y.; Jia, M.; Liu, H.; Xie, M.; Wang, T.; Zhou, L.: (2014). Development of a new spray/wall interaction model for diesel spray under PCCI-engine relevant conditions. Atomization Sprays, 24(1)

Download references

Author information

Authors and Affiliations

Authors

Contributions

G. Babusankar carried out the design of the work and Data collection; V. Manieniyan has done the data analysis, interpretation and drafting of the article; S. Sivaprakasam was involved in the critical revision of the article and Final approval of the version to be published.

Corresponding author

Correspondence to V. Manieniyan.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babusankar, G., Manieniyan, V. & Sivaprakasam, S. Numerical Investigation of a Dual Fuel Engine Fueled by Diesel-Acetylene and Biodiesel-Acetylene with Modified Piston Bowl Geometry. Arab J Sci Eng 48, 3783–3795 (2023). https://doi.org/10.1007/s13369-022-07254-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07254-x

Keywords

Navigation