Skip to main content

Advertisement

Log in

Investigating the effect of piston bowl geometry on the partially premixed dual fuel combustion engine at low load condition

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

One of the most important emerged technologies to improve the emission characteristics of internal combustion engines is the dual-fuel combustion engines being fueled with an abundant clean environmentally friendly fuel such as natural gas as the main fuel while having conventional compression ignition engine design. In this research, a three-dimensional CFD model of fluid flow coupled with the chemical kinetics mechanism is developed and the numerical results of a partially premixed combustion of natural gas and diesel fuel are presented in different piston bowl shapes. The results of the numerical analyses for different combustion chamber designs in the natural gas-diesel dual fuel engine reveal that the bathtub shape geometry, comparing with other piston-bowl geometries, results in a combustion being more efficient and yielding better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.G. Papagiannakis, D.T. Hountalas, Ener. Convers. Manage. 45, 2971 (2004)

    Article  Google Scholar 

  2. O.M.I. Nwafor, Sadhana 27, 375 (2002)

    Article  Google Scholar 

  3. R.G. Papagiannakis, P.N. Kotsiopoulos, T.C. Zannis, E.A. Yfantis, D.T. Hountalas, C.D. Rakopoulos, Energy 35, 1129 (2010)

    Article  Google Scholar 

  4. S.M. Mousavi, R.K. Saray, K. Poorghasemi, A. Maghbouli, Fuel 166, 309 (2016)

    Article  Google Scholar 

  5. W. Li, Z. Liu, Z. Wang, Energy 94, 72841 (2016)

    Google Scholar 

  6. B. Yang, L. Wang, L. Ning, K. Zeng, Appl. Therm. Eng. 102, 822 (2016)

    Article  Google Scholar 

  7. A.G. Hockett, G. Hampson, A.J. Marchese, Int. J. Powertrains 6, 76 (2017)

    Article  Google Scholar 

  8. R. Reitz, G. Duraisamy, Prog. Energy Combust. Sci. 46, 12 (2015)

    Article  Google Scholar 

  9. J.M. Desantes, J. Benajes, A. Garcia, J. Monsalve-Serrano, Energy 78, 854 (2014)

    Article  Google Scholar 

  10. A.B. Dempsey, N.R. Walker, E. Gingrich, R.D. Reitz, Combus. Sci. Technol. 186, 210 (2014)

    Article  Google Scholar 

  11. A.H. Kakaee, P. Rahnama, A. Paykani, J. Nat. Gas Sci. Eng. 25, 58 (2015)

    Article  Google Scholar 

  12. S.L. Kokjohn, R.M. Hanson, D.A. Splitter, R.D. Reitz, Int. J. Eng. Res. 12, 209 (2011)

    Article  Google Scholar 

  13. J. Benajes, S. Molina, A. García, E. Belarte, M. Vanvolsem, Appl. Therm. Eng. 63, 66 (2014)

    Article  Google Scholar 

  14. J. Benajes, J.M. Pastor, A. Garcia, J. Monsalve-Serrano, Energy Convers. Manag. 103, 1019 (2015)

    Article  Google Scholar 

  15. J. Benajes, A. Garcia, J.M. Pastor, J. Monsalve-Serrano, Energy 98, 64 (2016)

    Article  Google Scholar 

  16. A. Dempsey, N. Walker, R. Reitz, SAE Int. J. Eng. 6, 78 (2013)

    Article  Google Scholar 

  17. D. Splitter, M. Wissink, S. Kokjohn, R. Reitz, Effect of Compression Ratio and Piston Geometry on RCCI Load Limits and Efficiency, SAE Technical Paper 2012-01-0383 (2012) https://doi.org/10.4271/2012-01-0383

  18. A.-H. Kakaee, A. Nasiri-Toosi, B. Partovi, A. Paykani, Appl. Therm. Eng. 102, 1462 (2016)

    Article  Google Scholar 

  19. J. Li, W.M. Yang, D.Z. Zhou, Energy Convers. Manag. 112, 359 (2016)

    Article  Google Scholar 

  20. J.C. Beale, R.D. Reitz, At. Sprays 9, 623 (1999)

    Article  Google Scholar 

  21. N. Ladommatos, H. Zhao, Engine Combustion Instrumentation and Diagnostics (SAE International, 2001)

  22. S. Gordon, B.J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks and ChapmanJouguet Detonations, NASA SP-273

  23. Z. Han, R.D. Reitz, Combustion 106, 267 (1995)

    Article  Google Scholar 

  24. J.K. Dukowicz, J. Comput. Phys. 35, 229 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  25. J.C. Beale, R.D. Reitz, At. Sprays 9, 623 (1999)

    Article  Google Scholar 

  26. R.J. Kee, F.M. Rupley, E. Meeks, J.A. Miller, CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics, 1996-05-01, https://doi.org/10.2172/481621

  27. Derek E. Nieman, Adam B. Dempsey, Rolf D. Reitz, SAE Int. J. Eng. 5, 270 (2012)

    Article  Google Scholar 

  28. H. Wang, R. Reitz, M. Yao, Comparison of Diesel Combustion CFD Models and Evaluation of the Effects of Model Constants, SAE Technical Paper 2012-01-0134, 2012, https://doi.org/10.4271/2012-01-0134

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Ganji.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatamnejad, H., Jafari, B. & Ganji, D.D. Investigating the effect of piston bowl geometry on the partially premixed dual fuel combustion engine at low load condition. Eur. Phys. J. Plus 134, 587 (2019). https://doi.org/10.1140/epjp/i2019-12935-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12935-0

Navigation