Skip to main content
Log in

The Preparation of CaO Catalyst from Eggshells and Its Application in Biodiesel Production from Waste Cooking Oil

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study aims to identify the capability of eggshells to act as catalysts in biodiesel production via the transesterification process. The source of calcium in eggshells is in the form of calcium carbonate. The eggshells undergo a drying process, followed by grinding and calcination at high temperatures to ensure that the calcium carbonate (CaCO3) is fully converted into CaO, which makes it fit for use. The CaO catalyst was prepared from powdered eggshells via calcination at 900 °C for 3 h. The morphological characteristics of CaO were observed by Field Emission Scanning Electron Microscopy and X-ray diffraction. The results obtained show that 1 wt% of catalyst loading has the highest fatty acid methyl ester production compared to others. The outcomes show that the eggshells can be used on a large scale as catalysts to transform waste cooking oil into biodiesel, thereby cutting prices, boosting product yield and fuel characteristics of biodiesel concurrently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ali, N.A.; Khairuddin, N.; Siddique, B.M.: Eggshell waste as a catalyst for biodiesel production: a preliminary study. IOP Conf. Ser. Mater. Sci. Eng. 1195, 012043 (2021). https://doi.org/10.1088/1757-899x/1195/1/012043

    Article  Google Scholar 

  2. Azman, N.S.; Marliza, T.S.; Asikin-Mijan, N.; Hin, T.Y.Y.; Khairuddin, N.: Production of biodiesel from waste cooking oil via deoxygenation using Ni–Mo/Ac catalyst. Processes (2021). https://doi.org/10.3390/pr9050750

    Article  Google Scholar 

  3. Borah, M.J.; Das, A.; Das, V.; Bhuyan, N.; Deka, D.: Transesterification of waste cooking oil for biodiesel production catalyzed by Zn substituted waste egg shell derived CaO nanocatalyst. Fuel 242, 345–354 (2019). https://doi.org/10.1016/j.fuel.2019.01.060

    Article  Google Scholar 

  4. de Feo, G.; di Domenico, A.; Ferrara, C.; Abate, S.; Osseo, L.S.: Evolution of waste cooking oil collection in an area with long-standing waste management problems. Sustainability (Switzerland) 12, 1–16 (2020). https://doi.org/10.3390/su12208578

    Article  Google Scholar 

  5. Halek, F.; Aghamohammadi, N.; Mohamadi, F.: Biodiesel production from waste edible oil with heterogeneous catalysts (nanoclay-based nanocatalysts). Arab. J. Sci. Eng. 44, 9919–9924 (2019). https://doi.org/10.1007/s13369-019-03986-5

    Article  Google Scholar 

  6. Borah, M.J.; Devi, A.; Borah, R.; Deka, D.: Synthesis and application of Co doped ZnO as heterogeneous nanocatalyst for biodiesel production from non-edible oil. Renew. Energy 133, 512–519 (2019). https://doi.org/10.1016/j.renene.2018.10.069

    Article  Google Scholar 

  7. da Silva Filho, S.C.; Miranda, A.C.; Silva, T.A.F.; Calarge, F.A.; de Souza, R.R.; Santana, J.C.C.; Tambourgi, E.B.: Environmental and techno-economic considerations on biodiesel production from waste frying oil in São Paulo city. J. Clean. Prod. 183, 1034–1042 (2018). https://doi.org/10.1016/j.jclepro.2018.02.199

    Article  Google Scholar 

  8. Razack, S.A.; Duraiarasan, S.: Response surface methodology assisted biodiesel production from waste cooking oil using encapsulated mixed enzyme. Waste Manag. 47, 98–104 (2016). https://doi.org/10.1016/j.wasman.2015.07.036

    Article  Google Scholar 

  9. Yusuff, A.S.; Bhonsle, A.K.; Trivedi, J.; Bangwal, D.P.; Singh, L.P.; Atray, N.: Synthesis and characterization of coal fly ash supported zinc oxide catalyst for biodiesel production using used cooking oil as feed. Renew. Energy 170, 302–314 (2021). https://doi.org/10.1016/j.renene.2021.01.101

    Article  Google Scholar 

  10. Eriksson, E.L.V.; Gray, E.M.A.: Optimization of renewable hybrid energy systems—a multi-objective approach. Renew. Energy 133, 971–999 (2019). https://doi.org/10.1016/j.renene.2018.10.053

    Article  Google Scholar 

  11. Koutinas, A.A.; Chatzifragkou, A.; Kopsahelis, N.; Papanikolaou, S.; Kookos, I.K.: Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel 116, 566–577 (2014). https://doi.org/10.1016/j.fuel.2013.08.045

    Article  Google Scholar 

  12. Attari, A.; Abbaszadeh-Mayvan, A.; Taghizadeh-Alisaraie, A.: Process optimization of ultrasonic-assisted biodiesel production from waste cooking oil using waste chicken eggshell-derived CaO as a green heterogeneous catalyst. Biomass Bioenerg. 158, 106357 (2022). https://doi.org/10.1016/j.biombioe.2022.106357

    Article  Google Scholar 

  13. Chung, Z.L.; Tan, Y.H.; Chan, Y.S.; Kansedo, J.; Mubarak, N.M.; Ghasemi, M.; Abdullah, M.O.: Life cycle assessment of waste cooking oil for biodiesel production using waste chicken eggshell derived CaO as catalyst via transesterification. Biocatal. Agric. Biotechnol. 21, 101317 (2019). https://doi.org/10.1016/j.bcab.2019.101317

    Article  Google Scholar 

  14. John-Jaja, S.A.; Udoh, U.H.; Nwokolo, S.C.: Repeatability estimates of egg weight and egg-shell weight under various production periods for Bovan Nera Black laying chicken. Beni-Suef Univ. J. Basic Appl. Sci. 5, 389–394 (2016). https://doi.org/10.1016/j.bjbas.2016.11.001

    Article  Google Scholar 

  15. Mittal, A.; Teotia, M.; Soni, R.K.; Mittal, J.: Applications of egg shell and egg shell membrane as adsorbents: a review. J. Mol. Liq. 223, 376–387 (2016). https://doi.org/10.1016/j.molliq.2016.08.065

    Article  Google Scholar 

  16. Mohan, T.P.; Kanny, K.: Thermal, mechanical and physical properties of nanoegg shell particle-filled epoxy nanocomposites. J. Compos. Mater. 52, 3989–4000 (2018). https://doi.org/10.1177/0021998318773445

    Article  Google Scholar 

  17. Banković-Ilić, I.B.; Miladinović, M.R.; Stamenković, O.S.; Veljković, V.B.: Application of nano CaO-based catalysts in biodiesel synthesis. Renew. Sustain. Energy Rev. 72, 746–760 (2017). https://doi.org/10.1016/j.rser.2017.01.076

    Article  Google Scholar 

  18. Kesić, Ž; Lukić, I.; Zdujić, M.; Mojović, L.; Skala, D.: Katalizatori na bazi oksida kalcijuma u procesima sinteze biodizela: Presek stanja. Chem. Ind. Chem. Eng. Q. 22, 391–408 (2016). https://doi.org/10.2298/CICEQ160203010K

    Article  Google Scholar 

  19. Marinković, D.M.; Stanković, M.V.; Veličković, A.V.; Avramović, J.M.; Miladinović, M.R.; Stamenković, O.O.; Veljković, V.B.; Jovanović, D.M.: Calcium oxide as a promising heterogeneous catalyst for biodiesel production: current state and perspectives. Renew. Sustain. Energy Rev. 56, 1387–1408 (2016). https://doi.org/10.1016/j.rser.2015.12.007

    Article  Google Scholar 

  20. Miladinović, M.R.; Krstić, J.B.; Tasić, M.B.; Stamenković, O.S.; Veljković, V.B.: A kinetic study of quicklime-catalyzed sunflower oil methanolysis. Chem. Eng. Res. Des. 92, 1740–1752 (2014). https://doi.org/10.1016/j.cherd.2013.11.023

    Article  Google Scholar 

  21. Veljković, V.B.; Stamenković, O.S.; Todorović, Z.B.; Lazić, M.L.; Skala, D.U.: Kinetics of sunflower oil methanolysis catalyzed by calcium oxide. Fuel 88, 1554–1562 (2009). https://doi.org/10.1016/j.fuel.2009.02.013

    Article  Google Scholar 

  22. Mahesh, S.E.; Ramanathan, A.; Begum, K.M.M.S.; Narayanan, A.: Biodiesel production from waste cooking oil using KBr impregnated CaO as catalyst. Energy Convers. Manag. 91, 442–450 (2015). https://doi.org/10.1016/j.enconman.2014.12.031

    Article  Google Scholar 

  23. Tang, Y.; Xu, J.; Zhang, J.; Lu, Y.: Biodiesel production from vegetable oil by using modified CaO as solid basic catalysts. J. Clean. Prod. 42, 198–203 (2013). https://doi.org/10.1016/j.jclepro.2012.11.001

    Article  Google Scholar 

  24. Kimura, T.; Miyazawa, T.; Nishikawa, J.; Kado, S.; Okumura, K.; Miyao, T.; Naito, S.; Kunimori, K.; Tomishige, K.: Development of Ni catalysts for tar removal by steam gasification of biomass. Appl. Catal. B 68, 160–170 (2006). https://doi.org/10.1016/j.apcatb.2006.08.007

    Article  Google Scholar 

  25. Fayyazi, E.; Ghobadian, B.; van de Bovenkamp, H.H.; Najafi, G.; Hosseinzadehsamani, B.; Heeres, H.J.; Yue, J.: Optimization of biodiesel production over chicken eggshell-derived CaO catalyst in a continuous centrifugal contactor separator. Ind. Eng. Chem. Res. 57, 12742–12755 (2018). https://doi.org/10.1021/acs.iecr.8b02678

    Article  Google Scholar 

  26. Degfie, T.A.; Mamo, T.T.; Mekonnen, Y.S.: Optimized biodiesel production from waste cooking oil (WCO) using calcium oxide (CaO) nano-catalyst. Sci. Rep. 9, 1–8 (2019). https://doi.org/10.1038/s41598-019-55403-4

    Article  Google Scholar 

  27. Erchamo, Y.S.; Mamo, T.T.; Workneh, G.A.; Mekonnen, Y.S.: Improved biodiesel production from waste cooking oil with mixed methanol–ethanol using enhanced eggshell-derived CaO nano-catalyst. Sci. Rep. 11, 1–12 (2021). https://doi.org/10.1038/s41598-021-86062-z

    Article  Google Scholar 

  28. Seffati, K.; Esmaeili, H.; Honarvar, B.; Esfandiari, N.: AC/CuFe2O4@CaO as a novel nanocatalyst to produce biodiesel from chicken fat. Renew. Energy 147, 25–34 (2020). https://doi.org/10.1016/j.renene.2019.08.105

    Article  Google Scholar 

  29. Nadeem, F.; Bhatti, I.A.; Ashar, A.; Yousaf, M.; Iqbal, M.; Mohsin, M.; Nisar, J.; Tamam, N.; Alwadai, N.: Eco-benign biodiesel production from waste cooking oil using eggshell derived MM-CaO catalyst and condition optimization using RSM approach. Arab. J. Chem. 14, 103263 (2021). https://doi.org/10.1016/j.arabjc.2021.103263

    Article  Google Scholar 

  30. Rosset, M.; Perez-Lopez, O.W.: FTIR spectroscopy analysis for monitoring biodiesel production by heterogeneous catalyst. Vib. Spectrosc. 105, 102990 (2019). https://doi.org/10.1016/j.vibspec.2019.102990

    Article  Google Scholar 

  31. Campos-Molina, M.J.; Santamaría-Gonźalez, J.; Ḿerida-Robles, J.; Moreno-Tost, R.; Albuquerque, M.C.G.; Bruque-Ǵamez, S.; Rodríguez-Castelĺon, E.; Jiḿenez-Ĺopez, A.; Maireles-Torres, P.: Base catalysts derived from hydrocalumite for the transesterification of sunflower oil. Energy Fuels 24, 979–984 (2010). https://doi.org/10.1021/ef9009394

    Article  Google Scholar 

  32. Bet-Moushoul, E.; Farhadi, K.; Mansourpanah, Y.; Nikbakht, A.M.; Molaei, R.; Forough, M.: Application of CaO-based/Au nanoparticles as heterogeneous nanocatalysts in biodiesel production. Fuel 164, 119–127 (2016). https://doi.org/10.1016/j.fuel.2015.09.067

    Article  Google Scholar 

  33. Badnore, A.U.; Jadhav, N.L.; Pinjari, D.V.; Pandit, A.B.: Efficacy of newly developed nano-crystalline calcium oxide catalyst for biodiesel production. Chem. Eng. Process. Process Intensif. 133, 312–319 (2018). https://doi.org/10.1016/j.cep.2018.09.007

    Article  Google Scholar 

  34. Bharti, P.; Singh, B.; Dey, R.K.: Process optimization of biodiesel production catalyzed by CaO nanocatalyst using response surface methodology. J. Nanostruct. Chem. 9, 269–280 (2019). https://doi.org/10.1007/s40097-019-00317-w

    Article  Google Scholar 

  35. Alias, N.I.; Kumar, J.; Jayakumar, A.L.; Zain, S.M.: Characterization of waste cooking oil for biodiesel production (Pencirian Sisa Minyak Masak untuk Penghasilan Biodisel). Jurnal Kejuruteraan SI 1, 79–83 (2018)

    Google Scholar 

  36. Knothe, G.: Analyzing biodiesel: standards and other methods. JAOCS J. Am. Oil Chem. Soc. 83, 823–833 (2006). https://doi.org/10.1007/s11746-006-5033-y

    Article  Google Scholar 

  37. Idowu, I.; Wylie, S.; Teng, K.H.; Kot, P.; Phipps, D.; Shaw, A.: Improving biodiesel yield of animal waste fats by combination of a pre-treatment technique and microwave technology. Renew. Energy 142, 535–542 (2019). https://doi.org/10.1016/j.renene.2019.04.103

    Article  Google Scholar 

  38. Canakci, M.: The potential of restaurant waste lipids as biodiesel feedstocks. Bioresour. Technol. 98, 183–190 (2007). https://doi.org/10.1016/j.biortech.2005.11.022

    Article  Google Scholar 

  39. Bouaid, A.; Vázquez, R.; Martinez, M.; Aracil, J.: Effect of free fatty acids contents on biodiesel quality. Pilot plant studies. Fuel 174, 54–62 (2016). https://doi.org/10.1016/j.fuel.2016.01.018

    Article  Google Scholar 

  40. Alleman, T.L.; Christensen, E.D.; Moser, B.R.: Improving biodiesel monoglyceride determination by ASTM method D6584-. Fuel 241, 65–70 (2019). https://doi.org/10.1016/j.fuel.2018.12.019

    Article  Google Scholar 

Download references

Acknowledgements

The success of this study is due to the support of the Ministry of Higher Education (MoHE) and Universiti Putra Malaysia Bintulu Sarawak Campus, Malaysia. The financial support of the Fundamental Research Grant Scheme (Ref.: FRGS/1/2018/TK05/UPM/02/8) and (GP-IPB Vot no: 9671301) have also contributed to the success of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nozieana Khairuddin.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, N.A., Khairuddin, N., Tengku Azmi, T.S.M. et al. The Preparation of CaO Catalyst from Eggshells and Its Application in Biodiesel Production from Waste Cooking Oil. Arab J Sci Eng 48, 383–388 (2023). https://doi.org/10.1007/s13369-022-07125-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07125-5

Keywords

Navigation