Skip to main content

Advertisement

Log in

Synthesis of Ca–Fe-based heterogeneous catalyst from waste shells and their application for transesterification of Jatropha oil

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

The depletion of fossil fuel reserves with increased fuel demand and global emissions has increased the search for eco-friendly renewable fuels with a low environmental impact. Biodiesel can be considered as mono-alkyl esters of long-chain fatty acids obtained from the transesterification of vegetable oils and animal fats. Economically low-cost biodiesel production has received considerable interest for blending with fossil-based diesel for a more sustainable future. Therefore, the current study focuses on synthesizing an efficient, low-cost heterogeneous CaO catalyst from waste egg and seashell using a solid-state method and applying it to the transesterification of Jatropha oil. The Ca2Fe2O5 solid catalyst was prepared by doping calcined CaO with iron in a 2:1 ratio using ferric oxide (Fe2O3). Furthermore, the catalyst was extruded and analytically characterized using XRD, FT IR, BET, and its basic strength was quantified by Hammett indicators. Later on, transesterification of Jatropha oil was optimized by varying reaction parameters, such as the molar ratio of methanol to Jatropha oil, reaction time, and catalyst loading. The maximum conversion yield was 96.3% at a 20:1 methanol-to-oil ratio and 80 bar N2 pressure using 5% (w/w) catalyst loading. Furthermore, the catalytic recycling study demonstrated that the Ca2Fe2O5 catalyst could retain > 70–80% of transesterification efficiency and stability up to 4 cycles under high acid value and moisture conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kober T, Schiffer HW, Densing M, Panos E. Global energy perspectives to 2060—WEC’s world energy scenarios 2019. Energy Strategy Rev. 2020;31: 100523. https://doi.org/10.1016/j.esr.2020.100523.

    Article  Google Scholar 

  2. Newell R, Raimi D, Aldana G. Global energy outlook 2019: the next generation of energy. Resources for the Future 2019;8–19.

  3. Agreement P. Paris agreement. Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change (21st Session, 2015: Paris). Retrived December. HeinOnline. pp. 2017.

  4. Köberle AC, Rochedo PRR, Lucena AFP, Szklo A, Schaeffer R. Brazil’s emission trajectories in a well-below 2 °C world: the role of disruptive technologies versus land-based mitigation in an already low-emission energy system. Clim Change. 2020;162(4):1823–42. https://doi.org/10.1007/s10584-020-02856-6.

    Article  CAS  Google Scholar 

  5. Machado PG, Cunha M, Walter A, Faaij A, Guilhoto JJM. Biobased economy for Brazil: Impacts and strategies for maximizing socioeconomic benefits. Renew Sustain Energy Rev. 2020. https://doi.org/10.1016/j.rser.2020.110573.

    Article  Google Scholar 

  6. Mahapatra MK, Kumar A. Biofuel production: global scenario and future challenges. In: Biofuels production-sustainability and advances in microbial bioresources. Berlin: Springer; 2020. p. 337–69.

    Chapter  Google Scholar 

  7. Maftuchah ZA, Winaya A, Rahmadesi Y. Biodiesel generated from Jatropha (Jatropha curcas Linn.) seeds selected based on various genotypes crossbred. Energy Rep. 2020;6:345–50. https://doi.org/10.1016/j.egyr.2020.11.160.

    Article  Google Scholar 

  8. Quah RV, Tan YH, Mubarak N, Khalid M, Abdullah E, Nolasco-Hipolito C. An overview of biodiesel production using recyclable biomass and non-biomass derived magnetic catalysts. J Environ Chem Eng. 2019;7(4): 103219. https://doi.org/10.1016/j.jece.2019.103219.

    Article  CAS  Google Scholar 

  9. Murta ALS, Freitas MAVD, Ferreira CG, Peixoto DCL. The use of palm oil biodiesel blends in locomotives: an economic, social and environmental analysis. Renew Energy. 2021;164:521–30. https://doi.org/10.1016/j.renene.2020.08.094.

    Article  CAS  Google Scholar 

  10. Neupane D, Bhattarai D, Ahmed Z, Das B, Pandey S, Solomon JKQ, Qin R, Adhikari P. Growing jatropha (Jatropha curcas l.) as a potential second-generation biodiesel feedstock. Inventions. 2021;6:1–23. https://doi.org/10.3390/inventions6040060.

    Article  Google Scholar 

  11. Riayatsyah TMI, Sebayang AH, Silitonga AS, Padli Y, Fattah IMR, Kusumo F, Ong HC, Mahlia TMI. Current progress of Jatropha curcas commoditisation as biodiesel feedstock: a comprehensive review. Front Energy Res. 2022;9:1–19. https://doi.org/10.3389/fenrg.2021.815416.

    Article  Google Scholar 

  12. Rathore V, Tyagi S, Newalkar B, Badoni RP. Jatropha and Karanja oil derived DMC–biodiesel synthesis: a kinetics study. Fuel. 2015;140:597–608. https://doi.org/10.1016/j.fuel.2014.10.003.

    Article  CAS  Google Scholar 

  13. Vujicic D, Comic D, Zarubica A, Micic R, Boskovic G. Kinetics of biodiesel synthesis from sunflower oil over CaO heterogeneous catalyst. Fuel. 2010;89(8):2054–61. https://doi.org/10.1016/j.fuel.2009.11.043.

    Article  CAS  Google Scholar 

  14. Boey P-L, Maniam GP, Hamid SA. Biodiesel production via transesterification of palm olein using waste mud crab (Scylla serrata) shell as a heterogeneous catalyst. Bioresour Technol. 2009;100(24):6362–8. https://doi.org/10.1016/j.biortech.2009.07.036.

    Article  CAS  PubMed  Google Scholar 

  15. Boro J, Thakur AJ, Deka D. Solid oxide derived from waste shells of Turbonilla striatula as a renewable catalyst for biodiesel production. Fuel Process Technol. 2011;92(10):2061–7. https://doi.org/10.1016/j.fuproc.2011.06.008.

    Article  CAS  Google Scholar 

  16. Viriya-empikul N, Krasae P, Puttasawat B, Yoosuk B, Chollacoop N, Faungnawakij K. Waste shells of mollusk and egg as biodiesel production catalysts. Bioresour Technol. 2010;101(10):3765–7. https://doi.org/10.1016/j.biortech.2009.12.079.

    Article  CAS  PubMed  Google Scholar 

  17. Boz N, Degirmenbasi N, Kalyon DM. Conversion of biomass to fuel: Transesterification of vegetable oil to biodiesel using KF loaded nano-γ-Al2O3 as catalyst. Appl Catal B-Environ. 2009;89(3):590–6. https://doi.org/10.1016/j.apcatb.2009.01.026.

    Article  CAS  Google Scholar 

  18. Vyas AP, Subrahmanyam N, Patel PA. Production of biodiesel through transesterification of Jatropha oil using KNO3/Al2O3 solid catalyst. Fuel. 2009;88(4):625–8. https://doi.org/10.1016/j.fuel.2008.10.033.

    Article  CAS  Google Scholar 

  19. Garcia CM, Teixeira S, Marciniuk LL, Schuchardt U. Transesterification of soybean oil catalyzed by sulfated zirconia. Bioresour Technol. 2008;99(14):6608–13. https://doi.org/10.1016/j.biortech.2007.09.092.

    Article  CAS  PubMed  Google Scholar 

  20. Alsalme A, Kozhevnikova EF, Kozhevnikov IV. Heteropoly acids as catalysts for liquid-phase esterification and transesterification. Appl Catal A. 2008;349(1):170–6. https://doi.org/10.1016/j.apcata.2008.07.027.

    Article  CAS  Google Scholar 

  21. Samart C, Sreetongkittikul P, Sookman C. Heterogeneous catalysis of transesterification of soybean oil using KI/mesoporous silica. Fuel Process Technol. 2009;90(7):922–5. https://doi.org/10.1016/j.fuproc.2009.03.017.

    Article  CAS  Google Scholar 

  22. Catarino M, Martins S, Soares Dias AP, Costa Pereira MF, Gomes J. Calcium diglyceroxide as a catalyst for biodiesel production. J Environ Chem Eng. 2019;7(3): 103099. https://doi.org/10.1016/j.jece.2019.103099.

    Article  CAS  Google Scholar 

  23. Granados ML, Poves MDZ, Alonso DM, Mariscal R, Galisteo FC, Moreno-Tost R, Santamaría J, Fierro JLG. Biodiesel from sunflower oil by using activated calcium oxide. App Catal B: Environ. 2007;73(3):317–26. https://doi.org/10.1016/j.apcatb.2006.12.017.

    Article  CAS  Google Scholar 

  24. Semwal S, Arora AK, Badoni RP, Tuli DK. Biodiesel production using heterogeneous catalysts. Bioresour Technol. 2011;102(3):2151–61. https://doi.org/10.1016/j.biortech.2010.10.080.

    Article  CAS  PubMed  Google Scholar 

  25. Veljković VB, Lakićević SH, Stamenković OS, Todorović ZB, Lazić ML. Biodiesel production from tobacco (Nicotiana tabacum L.) seed oil with a high content of free fatty acids. Fuel. 2006;85(17):2671–5. https://doi.org/10.1016/j.fuel.2006.04.015.

    Article  CAS  Google Scholar 

  26. Alba-Rubio AC, Santamaría-González J, Mérida-Robles JM, Moreno-Tost R, Martín-Alonso D, Jiménez-López A, Maireles-Torres P. Heterogeneous transesterification processes by using CaO supported on zinc oxide as basic catalysts. Catal Today. 2010;149(3):281–7. https://doi.org/10.1016/j.cattod.2009.06.024.

    Article  CAS  Google Scholar 

  27. Chavan SB, Kumbhar RR, Madhu D, Singh B, Sharma YC. Synthesis of biodiesel from Jatropha curcas oil using waste eggshell and study of its fuel properties. RSC Adv. 2015;5(78):63596–604. https://doi.org/10.1039/C5RA06937H.

    Article  CAS  Google Scholar 

  28. Niju S, Begum S, Anantharaman N. Continuous flow reactive distillation process for biodiesel production using waste egg shells as heterogeneous catalysts. RSC Adv. 2014;4(96):54109–14. https://doi.org/10.1039/C4RA05848H.

    Article  CAS  Google Scholar 

  29. Nakatani N, Takamori H, Takeda K, Sakugawa H. Transesterification of soybean oil using combusted oyster shell waste as a catalyst. Bioresour Technol. 2009;100(3):1510–3. https://doi.org/10.1016/j.biortech.2008.09.007.

    Article  CAS  PubMed  Google Scholar 

  30. Obadiah A, Swaroopa GA, Kumar SV, Jeganathan KR, Ramasubbu A. Biodiesel production from Palm oil using calcined waste animal bone as catalyst. Bioresour Technol. 2012;116:512–6. https://doi.org/10.1016/j.biortech.2012.03.112.

    Article  CAS  PubMed  Google Scholar 

  31. Suryaputra W, Winata I, Indraswati N, Ismadji S. Waste capiz (Amusium cristatum) shell as a new heterogeneous catalyst for biodiesel production. Renew Energy. 2013;50:795–9. https://doi.org/10.1016/j.renene.2012.08.060.

    Article  CAS  Google Scholar 

  32. Vieira SS, Magriotis ZM, Santos NAV, Saczk AA, Hori CE, Arroyo PA. Biodiesel production by free fatty acid esterification using lanthanum (La3+) and HZSM-5 based catalysts. Bioresour Technol. 2013;133:248–55. https://doi.org/10.1016/j.biortech.2013.01.107.

    Article  CAS  PubMed  Google Scholar 

  33. Ahmed TAE, Kulshreshtha G, Hincke MT. CHAPTER 19 value-added uses of eggshell and eggshell membranes. In: Eggs as functional foods and nutraceuticals for human health. London: The Royal Society of Chemistry; 2019. p. 359–97. https://doi.org/10.1039/9781788013833-00359.

    Chapter  Google Scholar 

  34. M K, V AMS. Eggshell as heterogeneous catalyst for synthesis of biodiesel from high free fatty acid chicken fat and its working characteristics on a CI engine. J Environ Chem Eng. 2018;6(4):4490–503. https://doi.org/10.1016/j.jece.2018.06.027.

    Article  CAS  Google Scholar 

  35. Krishnamurthy KN, Sridhara SN, Ananda Kumar CS. Optimization and kinetic study of biodiesel production from Hydnocarpus wightiana oil and dairy waste scum using snail shell CaO nano catalyst. Renew Energy. 2020;146:280–96. https://doi.org/10.1016/j.renene.2019.06.161.

    Article  CAS  Google Scholar 

  36. Khemthong P, Luadthong C, Nualpaeng W, Changsuwan P, Tongprem P, Viriya-empikul N, Faungnawakij K. Industrial eggshell wastes as the heterogeneous catalysts for microwave-assisted biodiesel production. Catal Today. 2012;190(1):112–6. https://doi.org/10.1016/j.cattod.2011.12.024.

    Article  CAS  Google Scholar 

  37. Bennett JA, Wilson K, Lee AF. Catalytic applications of waste-derived materials. J Mater Chem A. 2016;4(10):3617–37. https://doi.org/10.1039/C5TA09613H.

    Article  CAS  Google Scholar 

  38. Laskar IB, Rajkumari K, Gupta R, Chatterjee S, Paul B, Rokhum L. Waste snail shell derived heterogeneous catalyst for biodiesel production by the transesterification of soybean oil. RSC Adv. 2018;8(36):20131–42. https://doi.org/10.1039/C8RA02397B.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. MacLeod CS, Harvey AP, Lee AF, Wilson K. Evaluation of the activity and stability of alkali-doped metal oxide catalysts for application to an intensified method of biodiesel production. Chem Eng J. 2008;135(1):63–70. https://doi.org/10.1016/j.cej.2007.04.014.

    Article  CAS  Google Scholar 

  40. Degfie TA, Mamo TT, Mekonnen YS. Optimized biodiesel production from waste cooking oil (WCO) using calcium oxide (CaO) nano-catalyst. Sci Rep. 2019;9:1–8. https://doi.org/10.1038/s41598-019-55403-4.

    Article  CAS  Google Scholar 

  41. Istadi I, Prasetyo SA, Nugroho TS. Characterization of K2O/CaO-ZnO catalyst for transesterification of soybean oil to biodiesel. Proc Environ Sci. 2015;23:394–9. https://doi.org/10.1016/j.proenv.2015.01.056.

    Article  CAS  Google Scholar 

  42. Tang Y, Ren H, Chang F, Gu X, Zhang J. Nano KF/Al2O3 particles as an efficient catalyst for no-glycerol biodiesel production by coupling transesterification. RSC Adv. 2017;7:5694–700. https://doi.org/10.1039/C6RA25782H.

    Article  CAS  Google Scholar 

  43. Olutoye MA, Wong SW, Chin LH, Amani H, Asif M, Hameed BH. Synthesis of fatty acid methyl esters via the transesterification of waste cooking oil by methanol with a barium-modified montmorillonite K10 catalyst. Renew Energy. 2016;86:392–8. https://doi.org/10.1016/j.renene.2015.08.016.

    Article  CAS  Google Scholar 

  44. Syamsuddin Y, Murat MN, Hameed BH. Synthesis of fatty acid methyl ester from the transesterification of high and low-acid-content crude palm oil (Elaeis guineensis) and karanj oil (Pongamia pinnata) over a calcium–lanthanum–aluminum mixed-oxides catalyst. Bioresour Technol. 2016;214:248–52. https://doi.org/10.1016/j.biortech.2016.04.083.

    Article  CAS  PubMed  Google Scholar 

  45. Qu T, Niu S, Zhang X, Han K, Lu C. Preparation of calcium modified Zn-Ce/Al2O3 heterogeneous catalyst for biodiesel production through transesterification of palm oil with methanol optimized by response surface methodology. Fuel. 2021;284: 118986. https://doi.org/10.1016/j.fuel.2020.118986.

    Article  CAS  Google Scholar 

  46. Doudin KI. Quantitative and qualitative analysis of biodiesel by NMR spectroscopic methods. Fuel. 2021;284:119114. https://doi.org/10.1016/j.fuel.2020.119114.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author expresses great gratitude to the University of Petroleum and Energy Studies for the award of a research fellowship and the R&D Centre, Indian Oil Corporation Limited, Faridabad for research funding and research facility.

Funding

Information that explains whether and by whom the research was supported in the acknowledgment section.

Author information

Authors and Affiliations

Authors

Contributions

SS: methodology, original draft preparation, writing—review & editing, resources. TR: methodology, original draft preparation; writing—review & editing, resources. AKP: writing methodology, reviewing and editing. AKA: supervision, writing—reviewing and editing. RPB: project administration, supervision, data curation, writing-reviewing and editing. RRS: writing methodology, reviewing and editing.

Corresponding author

Correspondence to Reeta Rani Singhania.

Ethics declarations

Conflict of interest

All authors declared no conflict of interest including financial, personal and other relationships with other people and other organizations for the submitted work.

Consent for publication

All the authors mutually agreed to submit the manuscript to SMAB.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 407 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semwal, S., Raj, T., Patel, A.K. et al. Synthesis of Ca–Fe-based heterogeneous catalyst from waste shells and their application for transesterification of Jatropha oil. Syst Microbiol and Biomanuf 3, 681–692 (2023). https://doi.org/10.1007/s43393-022-00123-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00123-6

Keywords

Navigation