Skip to main content
Log in

Mixed Bioconvective Flow of Williamson Nanofluid Over a Rough Vertical Cone

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper investigates the mixed bio-convection in a flow of Williamson nanofluid with liquid oxygen diffusion. The main innovation is to study the bio-convection and surface roughness in a flow of non-Newtonian Williamson nanofluid via a nonsimilar approach. The applications of bio-convection in boundary layer analysis include biological sciences, drugs and biotechnology, wastewater treatment, biofuels processing, and food production. The nonlinear coupled partial differential equations are the governing equations of the given problem. Mangler’s nonsimilar transformations are utilized to get a non-dimensional form of governing equations. For mathematical simplifications, implicit finite difference scheme and Quasilinearization technique are used. Further, an analysis is carried out for various controlled parameters, and the results are depicted through graphs. The heat transfer rate for nanofluid is approximately about 4% more than that of Williamson nanofluid. Moreover, the heat transfer rate for a permeable surface (suction case) is about 44% more than for an impermeable surface. The wall suction augments the mass transfer rate of liquid oxygen, and it is about 140% for rough surface compared to the smooth surface. Microorganism’s density in the fluid is more for lower values of bio-convection Lewis and Peclet numbers. The microorganism’s density number enhances by about 78% when the value of the Peclet number increases from 1 to 2. The results are compared to earlier published papers and have an excellent agreement with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(u,\,\,v\) :

Velocity components

\(x,\,y\) :

Cartesian coordinates

\(U_{0}\) :

Reference velocity

\(U_{e}\) :

Velocity of the mainstream flow

\(Pr\) :

Prandtl number

\(Re\) :

Reynolds number

\(D_{T}\) :

Thermophoresis coefficient

\(Nt\) :

Thermophoresis parameter

\(D_{B}\) :

Brownian diffusion coefficient

\(Nb\) :

Brownian motion parameter

\(Nr\) :

Nanoparticles Buoyancy ratio parameter

\(J\) :

Ratio of heat capacity of nanoparticles to the fluid phase

\(C_{nf}\) :

Specific heat capacity of the nanoliquid

\(Sc\) :

Schmidt number

\(Le\) :

Lewis number

\(W\) :

Williamson parameter

\(Pe\) :

Bioconvection Peclet number

\(D_{N}\) :

Diffusivity of microorganisms

\(Lb\) :

Bioconvection Lewis number

\(Rb\) :

Bioconvection Rayleigh number

\(Wc\) :

Maximum cell speed of microorganisms

\(b\) :

Chemotaxis constant

\(m\) :

Exponent in the power law variation in the velocity of mainstream

\(A\) :

Suction parameter

\(F\) :

Dimensionless velocity

\(G\) :

Non-dimensional temperature

\(H\) :

Non-dimensional concentration

\(R\) :

Dimensionless nanoparticle’s volume fraction

\(S\) :

Dimensionless microorganisms’ density

\(C_{f}\) :

Skin friction coefficient

\(Re_{x}\) :

Local Reynolds number

\(Nu\) :

Nusselt number

\(Sh_{1}\) :

Mass transfer rate of liquid hydrogen

\(Sh_{2}\) :

Nanoparticle’s mass transfer rate

\(Nn\) :

Density number of motile microorganisms

\(\phi\) :

Half angle of the vertical cone

\(\Gamma\) :

Time constant

\(\nu\) :

Viscosity

\(\rho_{f}\) :

Density of nanofluid

\(\rho_{p}\) :

Density of the solid nanoparticles

\(\rho_{N}\) :

Density of microorganisms

\(\theta\) :

Nanoparticle’s volume fraction

\(\alpha\) :

Roughness parameter

\(\omega\) :

Frequency

\(\varepsilon\) :

Velocity ratio parameter

\(\gamma\) :

Average volume of a microorganisms

\(\sigma\) :

Microorganisms’ concentration difference

\(\lambda\) :

Mixed convection parameter

\(\xi ,\,\,\eta\) :

Transformed variables

\(p\) :

Nanoparticles

\(f\) :

Nanofluid

\(w\) :

Conditions at the cone’s surface

\(\infty\) :

Conditions at the boundary layer edge

\(\xi ,\,\,\eta\) :

Derivatives w.r.t these variables

References

  1. Platt, J.R.: Bioconvection patterns in cultures of free swimming organisms. Science 133, 1766–1767 (1961)

    Article  Google Scholar 

  2. Pedley, T.J.; Hill, N.A.; Kessler, J.O.: The growth of bioconvection patterns in a uniform suspension of gyrotactic microorganisms. J. Fluid Mech. 195, 223–237 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ghorai, S.; Hill, N.A.: Development and stability of gyrotactic plumes in bioconvection. J. Fluid Mech. 400, 1–31 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hill, N.A.; Pedley, T.J.: Bioconvection. Fluid Dyn. Res. 37, 1–2 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Xu, H.; Pop, I.: Mixed convection flow of a nanofluid over a stretching surface with uniform free stream in the presence of both nanoparticles and gyrotactic microorganisms. Int. J. Heat Mass Transf. 75, 610–623 (2014)

    Article  Google Scholar 

  6. Zadeh, S.M.H.; Mehryan, S.A.M.; Sheremet, M.A.; Izadi, M.; Ghodrat, M.: Numerical study of mixed bio-convection associated with a micropolar fluid. Therm. Sci. Eng. Prog. 18, 100539 (2020)

    Article  Google Scholar 

  7. Sheremet, M.A.; Grosan, T.; Pop, I.: MHD free convection flow in an inclined square cavity filled with both nanofluids and gyrotactic microorganisms. Int. J. Numer. Method. H. 29, 4642–4659 (2019)

    Article  Google Scholar 

  8. Awan, A.U.; Ali Shah, S.A.; Ali, B.: Bio-convection effects on Williamson nanofluid flow with exponential heat source and motile microorganism over a stretching sheet. Chin. J. Phys. (2022). https://doi.org/10.1016/j.cjph.2022.04.002

    Article  MathSciNet  Google Scholar 

  9. Habibishandiz, M.; Saghir, Z.: MHD mixed convection heat transfer of nanofluid containing oxytactic microorganisms inside a vertical annular porous cylinder. Int. J. Thermofluid 14, 100151 (2022)

    Article  Google Scholar 

  10. Rashad, A.M.; Nabwey, H.A.: Gyrotactic mixed bioconvection flow of a nanofluid past a circular cylinder with convective boundary condition. J. Taiwan Inst. Chem. Eng. 99, 9–17 (2019)

    Article  Google Scholar 

  11. Patil, P.M.; Benawadi, S.; Shanker, B.: Influence of mixed convection nanofluid flow over a rotating sphere in the presence of diffusion of liquid hydrogen and ammonia. Math. Comput. Simul. 194, 764–781 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sheikholeslami, M.; Ebrahimpur, Z.: Thermal improvement of linear Fresnel solar system utilizing water nanofluid and multi-way twisted tape. Int. J. Therm. Sci. 176, 107505 (2022)

    Article  Google Scholar 

  13. Shang, Y.; Dehkordi, R.B.; Chupradit, S.; Toghraie, D.; Sevibitov, A.; Hekmatifar, M.; Suksatan, W.; Sabetvand, R.: The computational study of microchannel thickness effects on nanofluid flow with molecular dynamics simulations. J. Mol. Liq. 345, 118240 (2022)

    Article  Google Scholar 

  14. Ekiciler, R.; Ali, M.S.: Cetinkaya: A comparative heat transfer study between monotype and hybrid nanofluid in a duct with various shapes of ribs. Therm. Sci. Eng. Prog. 23, 100913 (2021)

    Article  Google Scholar 

  15. Choi, S.U.S.; Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles, p. 99–105. ASME Int. Mech. Eng. Cong. Exp, San Francisco CA (1995)

    Google Scholar 

  16. Eid, M.R.: Chemical reaction effect on MHD boundary layer flow of two – phase nanofluid model over an exponentially stretching sheet with heat generation. J. Mol. Liq. 220, 718–725 (2016)

    Article  Google Scholar 

  17. Patil, P.M.; Kulkarni, M.; Hiremath, P.S.: Effects of surface roughness on mixed convective nanoliquid flow past an exponentially stretching permeable surface. Chin. J. Phys. 64, 203–218 (2020)

    Article  Google Scholar 

  18. Patil, P.M.; Shashikant, A.; Hiremath, P.S.: Influence of liquid hydrogen and nitrogen on MHD triple diffusive mixed convection nanoliquid flow in presence of surface roughness. Int. J. Hydrog. Energy. 43, 20101–20117 (2018)

    Article  Google Scholar 

  19. Patil, P.M.; Kulkarni, M.; Tonannavar, J.R.: Influence of applied magnetic field on nonlinear mixed convective nanoliquid flow past a permeable rough cone. Indian J. Phys. 96, 1453–1464 (2022)

    Article  Google Scholar 

  20. Patil, P.M.: Effects of free convection on the oscillatory flow of a polar fluid through a porous medium in the presence of variable wall heat flux. J. Eng. Phys. Thermophys. 81, 905–922 (2008)

    Article  Google Scholar 

  21. Kho, Y.B.; Hussanan, A.; Mohamed, M.K.A.; Salleh, M.Z.: Heat and mass transfer analysis on flow of Williamson nanofluid with thermal and velocity slips: Buongiorno model. Propuls. Power Res. 8, 243–252 (2019)

    Article  Google Scholar 

  22. Ishak, A.; Lok, Y.Y.; Pop, I.: Non-Newtonian Power- law fluid flow past a shrinking sheet with suction. Chem. Eng. Commun. 199, 142–150 (2012)

    Article  Google Scholar 

  23. Nadeem, S.; Hussain, S.T.: Flow and heat transfer analysis of Williamson nanofluid. Appl. Nanosci. 4, 1005–1012 (2014)

    Article  Google Scholar 

  24. Kumar, A.; Tripathi, R.; Singh, R.; Chaurasiya, V.K.: Simultaneous effects of nonlinear thermal radiation and Joule heating on the flow of Williamson nanofluid with entropy generation. Physica A. 551, 123972 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ahmad, I. Aziz, S., Ali, N., Ullah Khan, S.: Significance of bioconvection in flow of Williamson nano-material confined by a porous radioactive Riga surface with convective Nield constrains. Numer. Methods Partial Differ. Eq. 1–22 (2020).

  26. Khan, S.U.; Shehzad, S.A.; Ali, N.: Bioconvection flow of magnetized Williamson nanoliquid with motile organisms and variable thermal conductivity. Appl. Nanosci. 10, 3325–3336 (2020)

    Article  Google Scholar 

  27. Smith, J.W.; Epstein, N.: Effect of wall heat transfer roughness on convective in commercial pipes. Am. J. Chem. Eng. 3, 249–254 (1975)

    Google Scholar 

  28. Savage, D.W.; Myers, J.E.: The effect of artificial surface roughness on heat and momentum transfer. Am. J. Chem. Eng. 9, 694–702 (1961)

    Google Scholar 

  29. Lewis, M.J.: An elementary analysis for predicting the momentum and heat transfer characteristics of a hydraulically rough surface. J. Heat Transf. 97, 249–254 (1975)

    Article  Google Scholar 

  30. Patil, P.M.; Shashikant, A.; Hiremath, P.S.: Diffusion of liquid hydrogen and oxygen in nonlinear mixed convection nanofluid flow over vertical cone. Int. J. Hydrog. Energy 44, 17061–17071 (2019)

    Article  Google Scholar 

  31. Patil, P.M.; Kulkarni, M.: Nonlinear mixed convective nanofluid flow along moving vertical rough plate. Rev. Mex. de Fis. 66, 153–161 (2020)

    Article  MathSciNet  Google Scholar 

  32. Patil, P.M.; Pop, I.: Effects of surface mass transfer on unsteady mixed convection flow over a vertical cone with chemical reaction. Heat Mass Transf. 47, 1453–1464 (2011)

    Article  Google Scholar 

  33. Schlichting, H.; Gersten, K.: Boundary layer theory. Springer, New York (2000)

    Book  MATH  Google Scholar 

  34. Smith, D.G.: Numerical solutions of partial differential equations: finite difference methods, 3rd edn. Clerendon Press, Oxford, United Kingdom (1985)

    Google Scholar 

  35. Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  36. Varga, R.S.: Matrix iterative analysis. Prentice-Hall, USA (2000)

    Book  MATH  Google Scholar 

  37. Scribd, C.A.: Mass diffusivity data (2018). https://www.scribd.com/doc/58782633/Mass-difusivity-Data.

  38. Ravindran, R.; Roy, S.; Momoniat, E.: Effects of injection (suction) on a steady mixed convection boundary layer flow over a vertical cone. Int. J. Numer. Methods Heat Fluid Flow 19, 432e44 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Karnataka Science and Technology Promotion Society, Bengaluru, India, through a fellowship for Sunil Benawadi No. DST/KSTePS/Ph.D. Fellowship/OTH-03:2020-21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Patil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, P.M., Benawadi, S. & Muttannavar, V.T. Mixed Bioconvective Flow of Williamson Nanofluid Over a Rough Vertical Cone. Arab J Sci Eng 48, 2917–2928 (2023). https://doi.org/10.1007/s13369-022-07048-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07048-1

Keywords

Navigation