Skip to main content

Advertisement

Log in

Synthesis and Characterization of Date Palm Fiber-Reinforced Geopolymer Composite

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study introduces the usage of date palm fibers (DPFs) as reinforcement of geopolymer matrices. The DPFs were subjected to alkaline treatment by immersion in alkaline solution (5 M) for 24 h at 40 °C. Because of the subsequent strong alkaline geopolymerization, the natural resin (lignin) was removed and the DPFs with a diameter around 600 µm on average broke down into microfibrils with an average diameter of 50 µm. The resultant microfibrils with a large surface area form a strong fiber-matrix adhesion force, thus leading to improved mechanical performance of the composite. The DPF-reinforced geopolymer composite (DPCs) are studied by examining their ductility, high elongation, and strain hardening with a modulus of 200 MPa. The experimental results indicate better mechanical properties of geopolymer composites when compared to the reference geopolymers. The flexural strength of the DPF-geopolymer composite is 12.5 MPa, more than four times the strength of reference geopolymers. The contribution of this research lies in developing attractive green composites based on DPFs and kaolinite. Reinforcement of the geopolymers with natural, abundant, recyclable, and reusable DPFs not only helps improve the mechanical performance of the composites, it also reduces CO2 emission from burning them. The novelty of this study is that microfibrils are extracted from the DPFs during the alkali geopolymerization reactions. These microfibrils are characterized by high surface areas, and subsequently high adhesion forces with the geopolymer matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Komnitsas, K.; Zaharaki, D.; Perdikatsis, V.: Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers. J. Hazard. Mater. 161, 760–768 (2009). https://doi.org/10.1016/j.jhazmat.2008.04.055

    Article  Google Scholar 

  2. Komnitsas, K.; Zaharaki, D.; Perdikatsis, V.: Geopolymerisation of low calcium ferronickel slags. J. Mater. Sci. 9(42), 3073–3082 (2007). https://doi.org/10.1007/s10853-006-0529-2

    Article  Google Scholar 

  3. Alshaaer, M.: Two-phase geopolymerization of kaolinite-based geopolymers. Appl Clay Sci. 86, 162–168 (2013). https://doi.org/10.1016/j.clay.2013.10.004

    Article  Google Scholar 

  4. Alshaaer, M.; Cuypers, H.; Wastiels, J. Stabilisation of kaolinitic soil for construction purposes by using mineral polymerisation technique. In Proceedings of the 6th International Conference Technology for Developing Countries, Amman (2002).

  5. Yousef, R.; El-Eswed, B.; Alshaaer, M.; Khalili, F.; Rahier, H.: Degree of reactivity of two kaolinitic minerals in alkali solution using zeolitic tuff or silica sand filler. Ceram. Int. 38(6), 5061–5067 (2012)

    Article  Google Scholar 

  6. Alshaaer, M.; El-Eswed, B.; Yousef, R.I.; Khalili, F.; Rahier, H.: Development of functional geopolymers for water purification, and construction purposes. J. Saudi Chem. Soc. 20(1), S85–S92 (2012)

    Google Scholar 

  7. Hajjaji, W.; Andrejkovičová, S.; Zanelli, C.; Alshaaer, M.; Dondi, D.; Labrincha, J.; Rocha, F.: Composition and technological properties of geopolymers based on metakaolin and red mud. Mater. Des. 52, 648–654 (2013)

    Article  Google Scholar 

  8. Hamaideh, A.; Komnitsas, K.; Esaifan, M.; Al-Kafawein, J.; Rahier, H.; Alshaaer, M.: Advantages of applying a steam curing cycle for the production of kaolinite-based geopolymers. Arab. J. Sci. Eng. 39(11), 7591–7597 (2014)

    Article  Google Scholar 

  9. Marvila, M.T.; de Azevedo, A.R.G.; Vieira, C.M.F.: Reaction mechanisms of alkali-activated materials. Revista IBRACON de Estruturas e Materiais. (2021). https://doi.org/10.1590/S1983-41952021000300009

    Article  Google Scholar 

  10. Marvila, A.A.; Oliveira, M.; Ferreira, L.; Colorado, W.; Teixeira, H.; Vieira, S.; Maurício, C.: Circular economy and durability in geopolymer ceramics pieces obtained from glass polishing waste. Int. J. Appl. Ceram. Technol. (2021). https://doi.org/10.1111/IJAC.13780

    Article  Google Scholar 

  11. El-Eswed, B.; Yousef, R.; Alshaaer, M.; Khalili, F.; Khoury, H.: Alkali solid-state conversion of kaolin and zeolite to effective adsorbents for removal of lead from aqueous solution. Desalin. Water Treat. 8(1–3), 124–130 (2009)

    Article  Google Scholar 

  12. Alshaaer, M.; El-Eswed, B.; Yousef, R.I.; Khalili, F.; Khoury, H.: Low-cost solid geopolymeric material for water purification. Ceram. Trans. 207, 265–271 (2009)

    Article  Google Scholar 

  13. Hamaideh, A.; Al-Qarallah, B.; Hamdi, M.R.; Abu Mallouh, S.; Alshaaer, M.: Synthesis of geopolymers using local resources for construction and water purification. J. Water Resour. Prot. 6, 507–513 (2014). https://doi.org/10.4236/jwarp.2014.65049

    Article  Google Scholar 

  14. Alshaaer, M.; Abu Mallouh, S.; Al-Kafawein, J.; Al-Faiyz, Y.; Fahmy, T.; Kallel, A.; Rocha, F.: Fabrication, microstructural and mechanical characterization of Luffa cylindrical fibre—reinforced geopolymer composite. Appl. Clay Sci. 143, 125–133 (2017)

    Article  Google Scholar 

  15. Agrela, F; Cabrera, M; Morales, M. M.; Zamorano M.; Alshaaer, M. Biomass fly ash and biomass bottom ash; in New trends in eco-efficient and recycled concrete, Woodhead Publishing, pp 23–58 (2019).

  16. Alshaaer, M.; J Al-Fayez, Y.; Fahmy T.; Hamaideh, A. “Synthesis of geopolymer cement using natural resources for green construction materials,” in Recent Advances in Earth Sciences, Environment and Development. Proceedings of the 8th International Conference on Engineering Mechanics, Structures, Engineering Geology (EMESEG'15), Konya, 2015.

  17. El-Eswed, B.; Yousef, R.I.; Alshaaer, M.; Hamadneh, I.; Al-Gharabli, S.; Khalili, F.: Stabilization/solidification of heavy metals in kaolin/zeolite based geopolymers. Int. J. Miner. Process. 137, 34–42 (2015)

    Article  Google Scholar 

  18. Alshaaer, M.; Shqair, M.; Abdelwahed, H.G.; Abuhasel, K.; Toro, M.Z.: Stabilization of heavy oil fly ash (HFO) for construction and environmental purposes. Int J. Appl. Eng. Res. 12(4), 488–497 (2017)

    Google Scholar 

  19. Alshaaer, M.; Fahmy, F.; Shqair, M.; Al-Kafawein, J.: Production of heavy fuel oil fly ash (HFO)-based geopolymers for passive cooling systems. Int. J. Appl. Eng. Res. 13(1), 134–140 (2018)

    Google Scholar 

  20. Zhao, Q.; Nair, B.; Rahimian, T.; Balaguru, P.: Novel geopolymer based composites with enhanced ductility”. J. Mater. Sci. 42(9), 3131–3137 (2007)

    Article  Google Scholar 

  21. Natali, A.; Manzi, S.; Bignozzi, M.: Novel fiber-reinforced composite materials based on sustainable geopolymer matrix. Proc. Eng. 21, 1124–1131 (2011)

    Article  Google Scholar 

  22. Puertas, F.; Amat, T.; Fernández-Jiménez, A.; Vázquez, T.: Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cem. Concr. Res. 33(12), 2031–2036 (2003)

    Article  Google Scholar 

  23. Alshaaer, M.; Zaharaki, D.; Komnitsas, K.: Microstructural characteristics and adsorption potential of a zeolitic tuff–metakaolin geopolymer. Desalin. Water Treat. 56(2), 338–345 (2014). https://doi.org/10.1080/19443994.2014.938306

    Article  Google Scholar 

  24. Marvila, M.T.; de Azevedo, A.R.G.; Delaqua, G.C.G.; Mendes, B.; Pedroti, L.G.; Vieira, C.M.F.: Performance of geopolymer tiles in high temperature and saturation conditions. Constr Build Mater. (2021). https://doi.org/10.1016/j.conbuildmat.2021.122994

    Article  Google Scholar 

  25. Sun, P.; Wu, H.: Transition from brittle to ductile behavior of fly ash using PVA fibers. Cem Concr Compos. 30(1), 29–36 (2008)

    Article  MathSciNet  Google Scholar 

  26. Alshaaer, M.: Synthesis, characterization, and recyclability of a functional jute-based geopolymer composite. Front. Built Environ. 7, 631307 (2021)

    Article  Google Scholar 

  27. Li, W.; Xu, J.: Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar. Mater. Sci. Eng. A. 514, 145–153 (2009). https://doi.org/10.1016/j.msea.2009.02.033

    Article  Google Scholar 

  28. Correia, E.; Torres, S.; Alexandre, M.; Gomes, K.; Barbosa, N.; Barros, S.: Mechanical performance of natural fibers reinforced geopolymer composites. Mater. Sci. Technol. 758, 139–145 (2013)

    Google Scholar 

  29. Korniejenko, K.; Fraczek, E.; Pytlak, E.; Adamski, M.: Mechanical properties of geopolymer composites reinforced with natural fibers. Proc. Eng. 151, 388–393 (2016)

    Article  Google Scholar 

  30. Silva, G.; Kim, S.; Aguilar, R.; Nakamatsu, J. Natural fibers as reinforcement additives for geopolymers—a review of potential eco-friendly applications to the construction industry. SM&T, 23, 2020.

  31. Niaki, S.R.A.; Kharrat, F.G.Z.: Effect of fiber chemical treatments on performance of date palm fibers using response surface methodology. Environ. Prog. Sustain. Ener. 38(5), 13177 (2019)

    Article  Google Scholar 

  32. Al-Oqla, F.; Sapuan, S.: Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J. Clean. Prod. 66, 347–354 (2014)

    Article  Google Scholar 

  33. Luo, Z.; Li, P.; Cai, D.; Chen, Q.; Qin, P.; Tan, T.; Cao, H.: Comparison of performances of corn fiber plastic composites made from different parts of corn stalk. Ind. Crops Prod. 95, 521–527 (2017)

    Article  Google Scholar 

  34. Ou, R.; Xie, Y.; Wolcott, M.; Sui, S.; Wang, Q.: Morphology, mechanical properties, and dimensional stability of wood particle/high density polyethylene composites: effect of removal of wood cell wall composition. Mater. Des. 58, 339–345 (2014)

    Article  Google Scholar 

  35. Oushabi, A.; Sair, S.; Abboud, Y.; Tanane, O.; Bouari, E.: Natural thermal-insulation materials composed of renewable resources: characterization of local date palm fibers (LDPF). J. Mater. Environ. Sci. 6(12), 3395–3402 (2015)

    Google Scholar 

  36. Wong, K.; Yousif, B.; Low, K.: The effects of alkali treatment on the interfacial adhesion of bamboo fibres. Proc. Inst. Mech. Eng. L. J. Mater. Des. Appl. 224(3), 139–148 (2010)

    Google Scholar 

  37. Alshaaer, M.: Synthesis and characterization of self-healing geopolymer composite. Constr Build Mater. 245, 118432 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118432

    Article  Google Scholar 

  38. Valadez-Gonzalez, A.; Cervantes-Uc, J.; Olayo, R.; Herrera-Franco, P.: Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites. Compos. Part B-Eng. 30(3), 309–320 (1999)

    Article  Google Scholar 

  39. Li, M.; Zhou, S.; Guo, X.: Effects of alkali-treated bamboo fibers on the morphology and mechanical properties of oil well cement. Constr Build Mater. 150, 619–625 (2017)

    Article  Google Scholar 

  40. Rao, K.M.M.; Rao, K.M.: Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Compos. Struct. 77, 288–295 (2007). https://doi.org/10.1016/j.compstruct.2005.07.023

    Article  Google Scholar 

  41. Ranjbar, N.; Zhang, M.: Fiber reinforced geopolymer composites: A review. Cem. Concr. Compos. 107, 103498 (2019). https://doi.org/10.1016/j.cemconcomp.2019.103498

    Article  Google Scholar 

  42. Al-Otaibi, M.; Alothman, O.; Alrashed, M.; Anis, A.; Naveen, J.; Jawaid, M.: Characterization of date palm fiber-reinforced different polypropylene matrices. Polym. 12(3), 597 (2020)

    Article  Google Scholar 

  43. Abu-Sharkh, B.; Kahraman, R.; Abbasi, S.; Hussein, I.: Effect of epolene E-43 as a compatibilizer on the mechanical properties of palm fiber–poly (propylene) composites. J. Appl. Polym. Sci. 92, 2581–2592 (2004)

    Article  Google Scholar 

  44. ASTM D790–10, Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International, West Conshohocken, PA, 2010, www.astm.org doi: https://doi.org/10.1520/D0790-10

  45. Gibson, L.J.: The hierarchical structure and mechanics of plant materials: review. J. R. Soc. Interface 9, 2749–2766 (2012). https://doi.org/10.1098/rsif.2012.0341

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazen Alshaaer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshaaer, M., Alqahtani, O., Alharbi, M.M.S. et al. Synthesis and Characterization of Date Palm Fiber-Reinforced Geopolymer Composite. Arab J Sci Eng 47, 12323–12332 (2022). https://doi.org/10.1007/s13369-021-06378-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06378-w

Keywords

Navigation