Skip to main content

Advertisement

Log in

Alkali-treated date palm fiber-reinforced unsaturated polyester composites: thermo-mechanical performances and structural applications

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Using short untreated and alkali-treated date palm fibers (UDPF and TDPF) of 5–10 mm with fractions of 10, 20, and 30% (by weight), the unsaturated polyester (UP) filled with date palm fibers (DPFs) was produced for eco-friendly technology. The composite reinforced with 10% (by weight) TDPF achieved the highest tensile and flexural strengths (28.52 and 76.36 MPa, respectively), whereas the composite produced with 30% (by weight) TDPF achieved the maximum tensile, flexural moduli, and Izod impact strength (770.77, 4200.23 MPa, and 8.48 kJ/m2, respectively). Furthermore, scanning electron microscopy (SEM) micrographs demonstrated the improved adhesion between the UP and TDPF. In addition, the first thermal degradation (Tonset) of UP/10TDPF, UP/20TDPF, and UP/30TDPF composites, increased at their respective 4.65, 21.47, and 16.29 °C after alkali treatment. A dynamic mechanical analysis (DMA) revealed respective maximum storage modulus (E′) and loss modulus (E″) values of 2542 and 243.29 MPa for the UP/10TDPF composite. In addition, the introduction of 10% (by weight) DPF decreased the Tg value, suggesting that the addition of fiber only had a plasticizing effect. However, for the UP/30DPF composites, the Tg values exhibited a positive shift, emphasizing the effectiveness of the fibers as a reinforcing agent. Moreover, the differential scanning calorimetry (DSC) results revealed a significant increase in glass transition temperature (Tg) due to the effect of alkali treatment of DPFs, while water absorption for a UP/10TDPF composite had the lowest weight variation due to the decrease in fiber loading and alkali treatment. These composites fabricated using TDPF as renewable natural resources with enhanced performance could be beneficial in a wide range of industrial applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ghori W, Saba N, Jawaid M, Asim M (2018) A review on date palm (phoenix dactylifera) fibers and its polymer composites. IOP Conf Ser Mater Sci Eng 368:012009. https://doi.org/10.1088/1757-899X/368/1/012009

    Article  Google Scholar 

  2. Islam S, Islam S, Hasan M (2022) Natural fiber reinforced polymer composites as sustainable green composites. Ref Modul Mater Sci Mater Eng 2022:1–10. https://doi.org/10.1016/b978-0-12-820352-1.00257-1

    Article  Google Scholar 

  3. Várdai R, Ferdinánd M, Lummerstorfer T, Pretschuh C, Jerabek M, Gahleitner M, Faludi G, Móczó J, Pukánszky B (2021) Effect of various organic fibers on the stiffness, strength and impact resistance of polypropylene; a comparison. Polym Int 70:145–153. https://doi.org/10.1002/pi.6105

    Article  CAS  Google Scholar 

  4. Kassab Z, Kassem I, Hannache H, Bouhfid R, Qaiss AE, El Achaby M (2020) Tomato plant residue as new renewable source for cellulose production: extraction of cellulose nanocrystals with different surface functionalities. Cellulose 27:4287–4303. https://doi.org/10.1007/s10570-020-03097-7

    Article  CAS  Google Scholar 

  5. Ramesh M, Palanikumar K, Reddy KH (2013) Mechanical property evaluation of sisal-jute-glass fiber reinforced polyester composites. Compos Part B Eng 48:1–9. https://doi.org/10.1016/j.compositesb.2012.12.004

    Article  CAS  Google Scholar 

  6. Azmami O, Sajid L, Boukhriss A, Majid S, El Ahmadi Z, Benayada A, Gmouh S (2021) Mechanical and aging performances of palm/wool and palm/polyester nonwovens coated by waterborne polyurethane for automotive interiors. Ind Crops Prod 170:113681. https://doi.org/10.1016/j.indcrop.2021.113681

    Article  CAS  Google Scholar 

  7. Al-Oqla FM, Sapuan SM (2014) Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J Clean Prod 66:347–354. https://doi.org/10.1016/j.jclepro.2013.10.050

    Article  CAS  Google Scholar 

  8. Maou S, Meghezzi A, Grohens Y, Meftah Y, Kervoelen A, Magueresse A (2021) Effect of various chemical modifications of date palm fibers (DPFs) on the thermo-physical properties of polyvinyl chloride (PVC)-highdensity polyethylene (HDPE) composites. Ind Crops Prod 171:113974. https://doi.org/10.1016/j.indcrop.2021.113974

    Article  CAS  Google Scholar 

  9. Maou S, Meghezzi A, Nebbache N, Meftah Y (2019) Mechanical, morphological, and thermal properties of poly(vinyl chloride)/low-density polyethylene composites filled with date palm leaf fiber. J Vinyl Addit Technol 25:E88–E93. https://doi.org/10.1002/vnl.21687

    Article  CAS  Google Scholar 

  10. Belakroum R, Gherfi A, Kadja M, Maalouf C, Lachi M, El Wakil N, Mai TH (2018) Design and properties of a new sustainable construction material based on date palm fibers and lime. Constr Build Mater 184:330–343. https://doi.org/10.1016/j.conbuildmat.2018.06.196

    Article  Google Scholar 

  11. Almi K, Benchabane A, Lakel S, Kriker A (2015) Potential utilization of date palm wood as composite reinforcement. J Reinf Plast Compos 34:1231–1240. https://doi.org/10.1177/0731684415588356

    Article  CAS  Google Scholar 

  12. Chikhi M (2016) Young’s modulus and thermophysical performances of bio-sourced materials based on date palm fibers. Energy Build 129:589–597. https://doi.org/10.1016/j.enbuild.2016.08.034

    Article  Google Scholar 

  13. Nor Arman NS, Chen RS, Ahmad S (2021) Review of state-of-the-art studies on the water absorption capacity of agricultural fiber-reinforced polymer composites for sustainable construction. Constr Build Mater 302:124174. https://doi.org/10.1016/j.conbuildmat.2021.124174

    Article  CAS  Google Scholar 

  14. Maou S, Meftah Y, Grohens Y, Kervoelen A, Magueresse A (2023) The effects of surface modified date-palm fiber fillers upon the thermo-physical performances of high density polyethylene-polyvinyl chloride blend with maleic anhydride as a grafting agent. J Appl Polym Sci 140:e53781. https://doi.org/10.1002/app.53781

    Article  CAS  Google Scholar 

  15. Surya Rajan B, Balaji MAS, Saravanakumar SS (2019) Effect of chemical treatment and fiber loading on physico-mechanical properties of Prosopis juliflora fiber reinforced hybrid friction composite. Mater Res Express 6:035302. https://doi.org/10.1088/2053-1591/aaf3cf

    Article  CAS  Google Scholar 

  16. Ikladious NE, Shukry N, El-Kalyoubi SF, Asaad JN, Mansour SH, Tawfik SY, Abou-Zeid RE (2019) Eco-friendly composites based on peanut shell powder/unsaturated polyester resin. Proc Inst Mech Eng Part L J Mater Des Appl 233:955–964. https://doi.org/10.1177/1464420717722377

    Article  CAS  Google Scholar 

  17. Meftah Y, Tayefi M, Fellouh F, Chouieur H, Maou S, Meghezzi A (2020) Influence of alkali treatment and dune sand content on the properties of date palm fiber reinforced unsaturated polyester hybrid composites. Rev des Compos des matériaux avancés 30:161–167. https://doi.org/10.18280/rcma.303-406

    Article  Google Scholar 

  18. Oushabi A, Sair S, Hassani FO, Abboud Y, Tanane O, El Bouari A (2017) The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): study of the interface of DPF-Polyurethane composite. South African J Chem Eng 23:116–123. https://doi.org/10.1016/j.sajce.2017.04.005

    Article  Google Scholar 

  19. Chandrasekar M, Ishak MR, Sapuan SM, Leman Z, Jawaid M (2017) A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plast Rubber Compos 46:119–136. https://doi.org/10.1080/14658011.2017.1298550

    Article  CAS  Google Scholar 

  20. Fook LT, Yatim JM (2015) An experimental study on the effect of alkali treatment on properties of kenaf fiber for reinforced concrete elements. Int J Res Eng Technol 04:37–40. https://doi.org/10.15623/ijret.2015.0408007

    Article  Google Scholar 

  21. Noorunnisa Khanam P, AlMaadeed MA (2014) Improvement of ternary recycled polymer blend reinforced with date palm fibre. Mater Des 60:532–539. https://doi.org/10.1016/j.matdes.2014.04.033

    Article  CAS  Google Scholar 

  22. Gheith MH, Aziz MA, Ghori W, Saba N, Asim M, Jawaid M, Alothman OY (2019) Flexural, thermal and dynamic mechanical properties of date palm fibres reinforced epoxy composites. J Mater Res Technol 8:853–860. https://doi.org/10.1016/j.jmrt.2018.06.013

    Article  CAS  Google Scholar 

  23. Negawo TA, Polat Y, Buyuknalcaci FN, Kilic A, Saba N, Jawaid M (2019) Mechanical, morphological, structural and dynamic mechanical properties of alkali treated Ensete stem fibers reinforced unsaturated polyester composites. Compos Struct 207:589–597. https://doi.org/10.1016/j.compstruct.2018.09.043

    Article  Google Scholar 

  24. Nuzaimah M, Sapuan SM, Nadlene R, Jawaid M (2019) Microstructure and mechanical properties of unsaturated polyester composites filled with waste rubber glove crumbs. Fibers Polym 20:1290–1300. https://doi.org/10.1007/s12221-019-8887-y

    Article  CAS  Google Scholar 

  25. Jayamani E, Heng SK, Sean LT, Bin BMK (2018) Mechanical properties of chicken feather reinforced unsaturated polyester composites. Key Eng Mater 775:3–6. https://doi.org/10.4028/www.scientific.net/KEM.775.3

    Article  Google Scholar 

  26. Zadeh KM, Inuwa IM, Arjmandi R, Hassan A, Almaadeed M, Mohamad Z, Khanam PN (2017) Effects of date palm leaf fiber on the thermal and tensile properties of recycled ternary polyolefin blend composites. Fibers Polym 18:1330–1335. https://doi.org/10.1007/s12221-017-1106-9

    Article  CAS  Google Scholar 

  27. Gharbi A, Hassen RB, Boufi S (2014) Composite materials from unsaturated polyester resin and olive nuts residue: the effect of silane treatment. Ind Crops Prod 62:491–498. https://doi.org/10.1016/j.indcrop.2014.09.012

    Article  CAS  Google Scholar 

  28. Das S (2017) Mechanical properties of waste paper/jute fabric reinforced polyester resin matrix hybrid composites. Carbohydr Polym 172:60–67. https://doi.org/10.1016/j.carbpol.2017.05.036

    Article  CAS  PubMed  Google Scholar 

  29. Habila T, Meftah Y, Maou S (2023) Thermal and physical properties of composite composites made from used PET bottles and palm fiber filled with unsaturated polyester. ASEAN J Chem Eng 23:94–102. https://doi.org/10.22146/ajche.82419

    Article  CAS  Google Scholar 

  30. Mahmoud Zaghloul MY, Yousry Zaghloul MM, Yousry Zaghloul MM (2021) Developments in polyester composite materials: an in-depth review on natural fibres and nano fillers. Compos Struct 278:114698. https://doi.org/10.1016/j.compstruct.2021.114698

    Article  CAS  Google Scholar 

  31. Chaudhary V, Ahmad F (2020) A review on plant fiber reinforced thermoset polymers for structural and frictional composites. Polym Test 91:106792. https://doi.org/10.1016/j.polymertesting.2020.106792

    Article  CAS  Google Scholar 

  32. Boominathan SK, Amutha V, Senthamaraikannan P, Raj DV, Selvaraj SK, Sakthivel S (2022) Investigation of mechanical, thermal and moisture diffusion behavior of Acacia Concinna fiber/polyester matrix composite. J Nat Fibers 19:13495–13510. https://doi.org/10.1080/15440478.2022.2099502

    Article  CAS  Google Scholar 

  33. Baley C, Gomina M, Breard J, Bourmaud A, Davies P (2020) Variability of mechanical properties of flax fibres for composite reinforcement. A review. Ind Crops Prod 145:111984. https://doi.org/10.1016/j.indcrop.2019.111984

    Article  CAS  Google Scholar 

  34. Al-Kaabi K, Al-Khanbashi A, Hammami A (2005) Date palm fibers as polymeric matrix reinforcement: DPF/polyester composite properties. Polym Compos 26:604–613. https://doi.org/10.1002/pc.20130

    Article  CAS  Google Scholar 

  35. Naili H, Jelidi A, Limam O, Khiari R (2017) Extraction process optimization of Juncus plant fibers for its use in a green composite. Ind Crops Prod 107:172–183. https://doi.org/10.1016/j.indcrop.2017.05.006

    Article  CAS  Google Scholar 

  36. Jadhav AC, Jadhav NC (2023) Mechanical and thermal properties of waste Abelmoschus manihot fibre-reinforced epoxy composites. Polym Bull 80:1699–1727. https://doi.org/10.1007/s00289-022-04144-y

    Article  CAS  Google Scholar 

  37. Nabinejad O, Sujan D, Rahman ME, Davies IJ (2017) Effect of filler load on the curing behavior and mechanical and thermal performance of wood flour filled thermoset composites. J Clean Prod 164:1145–1156. https://doi.org/10.1016/j.jclepro.2017.07.036

    Article  CAS  Google Scholar 

  38. Jadhav AC, Jadhav NC (2022) Waste sunn hemp fibres/epoxy composites: mechanical and thermal properties. Iran Polym J 31:821–833. https://doi.org/10.1007/s13726-022-01034-y

    Article  CAS  Google Scholar 

  39. Sahari J, Maleque MA (2016) Effect of oil palm ash on the mechanical and thermal properties of unsaturated polyester composites. e-Polym 16:323–329. https://doi.org/10.1515/epoly-2016-0079

    Article  CAS  Google Scholar 

  40. Paluvai NR, Mohanty S, Nayak SK (2017) Unsaturated polyester-toughened epoxy composites: Effect of sisal fiber on thermal and dynamic mechanical properties. J Vinyl Addit Technol 23:188–199. https://doi.org/10.1002/vnl.21491

    Article  CAS  Google Scholar 

  41. Patil VM, Agrawal SK (2017) Thermo mechanical behavior of wool Noil composite reinforced with unsaturated polyester resin. Int J Text Eng Process 3:7–12

    Google Scholar 

  42. Ahmed L, Zhang B, Hawkins S, Mannan MS, Cheng Z (2017) Study of thermal and mechanical behaviors of flame retardant polystyrene-based nanocomposites prepared via in-situ polymerization method. J Loss Prev Process Ind 49:228–239. https://doi.org/10.1016/j.jlp.2017.07.003

    Article  CAS  Google Scholar 

  43. da Luz FS, Candido VS, da Silva ACR, Monteiro SN (2018) Thermal behavior of polyester composites reinforced with green sugarcane bagasse fiber. Jom 70:1965–1971. https://doi.org/10.1007/s11837-018-3086-7

    Article  CAS  Google Scholar 

  44. Saba N, Jawaid M, Alothman OY, Paridah MT (2016) A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater 106:149–159. https://doi.org/10.1016/j.conbuildmat.2015.12.075

    Article  CAS  Google Scholar 

  45. Shanmugam D, Thiruchitrambalam M (2013) Static and dynamic mechanical properties of alkali treated unidirectional continuous Palmyra palm leaf stalk fiber/jute fiber reinforced hybrid polyester composites. Mater Des 50:533–542. https://doi.org/10.1016/j.matdes.2013.03.048

    Article  CAS  Google Scholar 

  46. Reed KE (1980) Dynamic mechanical analysis of fiber reinforced composites. Polym Compos 1:44–49. https://doi.org/10.1002/pc.750010109

    Article  CAS  Google Scholar 

  47. Suresh Kumar SM, Duraibabu D, Subramanian K (2014) Studies on mechanical, thermal and dynamic mechanical properties of untreated (raw) and treated coconut sheath fiber reinforced epoxy composites. Mater Des 59:63–69. https://doi.org/10.1016/j.matdes.2014.02.013

    Article  CAS  Google Scholar 

  48. Manalo AC, Wani E, Zukarnain NA, Karunasena W, Lau KT (2015) Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre-polyester composites. Compos Part B Eng 80:73–83. https://doi.org/10.1016/j.compositesb.2015.05.033

    Article  CAS  Google Scholar 

  49. Alshahrani H, Arun Prakash VR (2022) Mechanical, fatigue and DMA behaviour of high content cellulosic corn husk fibre and orange peel biochar epoxy biocomposite: a greener material for cleaner production. J Clean Prod 374:133931. https://doi.org/10.1016/j.jclepro.2022.133931

    Article  CAS  Google Scholar 

  50. Reddy BM, Reddy RM, Reddy BC, Reddy PV, Rao HR, Reddy YM (2020) The effect of granite powder on mechanical, structural and water absorption characteristics of alkali treated cordia dichotoma fiber reinforced polyester composite. Polym Test 91:106782. https://doi.org/10.1016/j.polymertesting.2020.106782

    Article  CAS  Google Scholar 

  51. Kumari YR, Ramanaiah K, Prasad AR, Reddy KH, Sanaka SP, Prudhvi AK (2021) Experimental investigation of water absorption behaviour of sisal fiber reinforced polyester and sisal fiber reinforced poly lactic acid composites. Mater Today Proc 44:935–940. https://doi.org/10.1016/j.matpr.2020.11.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Antoine Kervoelen, Anthony Magueresse, and Francoise Peresse for supporting this experimental work with the characterization methods.

Author information

Authors and Affiliations

Authors

Contributions

MS: writing—original draft, methodology. MY: writing—original draft, supervision. BI: writing—review & editing. BA: methodology.

Corresponding author

Correspondence to Samira Maou.

Ethics declarations

Conflict of interest

All the authors contributed and validated the present version of the manuscript and declare no conflict of interest.

Ethical approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maou, S., Meftah, Y., Bouchamia, I. et al. Alkali-treated date palm fiber-reinforced unsaturated polyester composites: thermo-mechanical performances and structural applications. Iran Polym J 32, 1581–1593 (2023). https://doi.org/10.1007/s13726-023-01224-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-023-01224-2

Keywords

Navigation