Skip to main content
Log in

Secure Communication Based on Microcontroller Unit with a Novel Five-Dimensional Hyperchaotic System

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, a five-dimensional hyperchaotic system for secure communication based on MCU is proposed. First, a five-dimensional hyperchaotic system is constructed and the features such as equilibrium stability and Lyapunov exponents are analyzed. The states of this system with different parameters are studied, including periodic, hyperchaotic and chaotic state. Next, the complexity of system is analyzed. By analyzing the complexity of each dimension, the correctness of system selection is verified and the dimension with the highest complexity is selected for communication encryption. Then, the hardware circuit is designed. The encryption and decryption of square wave signal are completed through simulation which realizing the secure communication. Finally, the accuracy of system and the algorithm of realizing chaos of MCU are adjusted, and the system after adjustment is in a chaotic state verified by 0–1 test, the chaos is successfully generated by MCU. Using MCU can reduce the hardware cost of signal encryption greatly, and apply five-dimensional hyperchaotic system to secure communication can not only improve the security but also enhance the anti-interference ability in the process of signal transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)

    Article  Google Scholar 

  2. Gleick, J.; Hilborn, R.C.: Chaos, making a new science. Am. J. Phys. 56(11), 1053–1054 (1988)

    Article  Google Scholar 

  3. Lü, J.; Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12(03), 659–661 (2002)

    Article  MathSciNet  Google Scholar 

  4. Guan, Z.H.; Huang, F.; Guan, W.: Chaos-based image encryption algorithm. Phys. Lett. A 346(1–3), 153–157 (2005)

    Article  Google Scholar 

  5. Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93(7), 964–979 (2008)

    Article  Google Scholar 

  6. Wang, Y.; Wong, K.W.; Liao, X., et al.: A chaos-based image encryption algorithm with variable control parameters. Chaos Solitons Fractals 41(4), 1773–1783 (2009)

    Article  Google Scholar 

  7. Mirzaei, O.; Yaghoobi, M.; Irani, H.: A new image encryption method: parallel sub-image encryption with hyper chaos. Nonlinear Dyn. 67(1), 557–566 (2012)

    Article  MathSciNet  Google Scholar 

  8. Hasimoto-Beltran, R.; Ramirez-Ramirez, R.: Cycle detection for secure chaos-based encryption. Commun. Nonlinear Sci. Numer. Simul. 16(8), 3203–3211 (2011)

    Article  MathSciNet  Google Scholar 

  9. Mahnaz, N.; Ziba, E.; Nasrollah, P.: Comments on a chaos-based public key encryption with keyword search scheme. Nonlinear Dyn. 94, 1127–1132 (2018)

    Article  Google Scholar 

  10. Akgul, A.; Moroz, I.M.; Durdu, A.: A novel data hiding method by using a chaotic system without equilibrium points. Mod. Phys. Lett. B 33(1), 1950357 (2019)

    Article  MathSciNet  Google Scholar 

  11. Jiang, N.; Zhao, X.; Zhao, A.; Wang, H.; Qiu, K.; Tang, J.: High-rate secure key distribution based on private chaos synchronization and alternating step algorithms. Int. J. Bifurc. Chaos 30(02), 2050027 (2020)

    Article  MathSciNet  Google Scholar 

  12. Kennedy, M.P.; Kolumban, G.: Performance evaluation of FM-DCSK modulation in multipath environments. IEEE Trans. Circuits Syst. 47(12), 1702–1711 (2000)

    Article  Google Scholar 

  13. Maggio, G.M.; Member, I.E.E.E., et al.: Pseudo-chaotic time hopping for UWB impulse radio. IEEE Trans. Syst. I Fundam. Theory Appl. 48(12), 1424–1435 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Cuomo, K.M.; Oppenheim, A.V.; Strogatz, S.H.: Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 40(10), 626–633 (2002)

    Article  Google Scholar 

  15. Grzybowski, J.M.V.; Rafikov, M.; Balthazar, J.M.: Synchronization of the unified chaotic system and application in secure communication. Commun. Nonlinear Sci. Numer. Simul. 14(6), 2793–2806 (2009)

    Article  MathSciNet  Google Scholar 

  16. Xingyuan, W.; Na, Z.; Xiaoli, R., et al.: Synchronization of spatiotemporal chaotic systems and application to secure communication of digital image. Chin. Phys. B 02, 129–136 (2011)

    Google Scholar 

  17. Ren, H.P.; Bai, C.: Secure communication based on spatiotemporal chaos. Chin. Phys. B 24(8), 080503 (2015)

    Article  Google Scholar 

  18. Nana, B.; Woafo, P.: Chaotic masking of communication in an emitter–relay–receiver electronic setup. Nonlinear Dyn. 82(1–2), 899–908 (2015)

    Article  MathSciNet  Google Scholar 

  19. Wang, Q.; Yu, S.; Li, C., et al.: Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems. IEEE Trans. Circuits Syst. I Regul. Pap. 63(3), 401–412 (2016)

    Article  MathSciNet  Google Scholar 

  20. Vaidyanathan, S.; Volos, C.K.; Pham, V.T.: Hyperchaos, control, synchronization and circuit simulation of a novel 4-D hyperchaotic system with three quadratic nonlinearities. In: Advances in Chaos Theory and Intelligent Control, pp. 297–325. Springer, Cham (2016)

  21. Hassan, M.F.: Synchronization of uncertain constrained hyperchaotic systems and chaos-based secure communications via a novel decomposed nonlinear stochastic estimator. Nonlinear Dyn. 83(4), 2183–2211 (2016)

    Article  MathSciNet  Google Scholar 

  22. Fataf, N.A.A.; Palit, S.K.; Mukherjee, S., et al.: Communication scheme using a hyperchaotic semiconductor laser model: Chaos shift key revisited. Eur. Phys. J. Plus 132(11), 492 (2017)

    Article  Google Scholar 

  23. Kassim, S.; Hamiche, H.; Djennoune, S., et al.: A novel secure image transmission scheme based on synchronization of fractional-order discrete-time hyperchaotic systems. Nonlinear Dyn. 88(4), 2473–2489 (2017)

    Article  MathSciNet  Google Scholar 

  24. Oden, J.; Lavrov, R.; Chembo, Y.K., et al.: Multi-Gbit/s optical phase chaos communications using a time-delayed optoelectronic oscillator with a three-wave interferometer nonlinearity. Chaos Interdiscip. J. Nonlinear Sci. 27(11), 114311 (2017)

    Article  Google Scholar 

  25. Khalaf, A.J.M.; Abdolmohammadi, H.R.; Ahmadi, A., et al.: Extreme multi-stability analysis of a novel 5D chaotic system with hidden attractors, line equilibrium, permutation entropy and its secure communication scheme. Eur. Phys. J. Spec. Top. 229, 1175–1188 (2020)

    Article  Google Scholar 

  26. Wu, X.; Fu, Z.; Kurths, J.: A secure communication scheme based generalized function projective synchronization of a new 5D hyperchaotic system. Phys. Scr. 90(4), 045210 (2015)

    Article  Google Scholar 

  27. Vaidyanathan, S.; Akgul, A., et al.: A new 4-D chaotic hyperjerk system, its synchronization, circuit design and applications in RNG, image encryption and chaos-based steganography. Eur. Phys. J. Plus 133(2), 46 (2018)

    Article  Google Scholar 

  28. Yu, F.; Zhang, Z.; Liu, L.; Shen, H.; Huang, Y., et al.: Secure communication scheme based on a new 5D multistable four-wing memristive hyperchaotic system with disturbance inputs. Complexity 2020(1), 16 (2020)

    MATH  Google Scholar 

  29. Yu, W.; Wang, J.; Wang, J., et al.: Design of a new seven-dimensional hyperchaotic circuit and its application in secure communication. IEEE Access 7, 125586–125608 (2019)

    Article  Google Scholar 

  30. Huang, Y.; Liu, L.; Shi, C., et al.: Analysis and FPGA realization of a novel 5D hyperchaotic four-wing memristive system, active control synchronization, and secure communication application. Complexity 2019, 1–18 (2019)

    Google Scholar 

  31. Hua, Z.; Zhou, Y.: Exponential chaotic model for generating robust chaos. IEEE Trans. Syst. Man Cybern. Syst. PP(99), 1–12 (2019)

    Article  Google Scholar 

  32. Hua, Z.; Zhou, B.; Zhou, Y.: Sine-transform-based chaotic system with FPGA implementation. IEEE Trans. Ind. Electron. 65, 2557–2566 (2017)

    Article  Google Scholar 

  33. Hua, Z.; Zhang, Y.; Zhou, Y.: Two-dimensional modular chaotification system for improving chaos complexity. IEEE Trans. Signal Process. 12(68), 1937–1949 (2020)

    Article  MathSciNet  Google Scholar 

  34. Chen, S.; Yu, S.; Lü, J., et al.: Design and FPGA-based realization of a chaotic secure video communication system. IEEE Trans. Circuits Syst. Video Technol. 28(9), 2359–2371 (2017)

    Article  Google Scholar 

  35. Li, N.; Martínez-Ortega, J.-F.; Díaz, V.H., et al.: A new high-efficiency multilevel frequency-modulation different chaos shift keying communication system. IEEE Syst. J. 12(4), 3334–3345 (2018)

    Article  Google Scholar 

  36. Aashiq, B.S.; Amirtharajan, R.: A robust medical image encryption in dual domain: chaos-DNA-IWT combined approach. Med. Biol. Eng. Comput. 58, 1445–1458 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Chinese National Natural Science Foundation No. 61973109, Hunan Provincial Degree and Graduate Education Reform Project No. 2020JGYB189, Natural Science Foundation of Hunan Province No. 2019JJ50150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxin Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Z., Yu, W., Wang, J. et al. Secure Communication Based on Microcontroller Unit with a Novel Five-Dimensional Hyperchaotic System. Arab J Sci Eng 47, 813–828 (2022). https://doi.org/10.1007/s13369-021-05450-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05450-9

Keywords

Navigation