Skip to main content
Log in

A novel secure image transmission scheme based on synchronization of fractional-order discrete-time hyperchaotic systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a secure image transmission scheme based on synchronization of fractional-order discrete-time hyperchaotic systems is proposed. In this scheme, a fractional-order modified-Hénon map is considered as a transmitter, the system parameters and fractional orders are considered as secret keys. As a receiver, a step-by-step delayed observer is used, and based on this one, an exact synchronization is established. To make the transmission scheme secure, an encryption function is used to cipher the original information using a key stream obtained from the chaotic map sequences. Moreover, to further enhance the scheme security, the ciphered information is inserted by inclusion method in the chaotic map dynamics. The first contribution of this paper is to propose new results on the observability and the observability matching condition of nonlinear discrete-time fractional-order systems. To the best of our knowledge, these features have not been addressed in the literature. In the second contribution, the design of delayed discrete observer, based on fractional-order discrete-time hyperchaotic system, is proposed. The feasibility of this realization is demonstrated. Finally, different analysis are introduced to test the proposed scheme security. Simulation results are presented to highlight the performances of our method. These results show that, our scheme can resist different kinds of attacks and it exhibits good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Stallings, W.: Cryptography and Network Security, 5th edn. Prentice-Hall, Englewood Cliffs (2011)

    Google Scholar 

  2. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-The Advanced Encryption Standard. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  3. Wang, X., Xu, D.: A novel image encryption scheme based on Brownian motion and PWLCM chaotic system. Nonlinear Dyn. 75, 345–353 (2014)

    Article  Google Scholar 

  4. Souyah, A., Feraoun, K.M.: An image encryption scheme combining chaos-memory cellular automata and weighted histogram. Nonlinear Dyn. 86(1), 639–653 (2016)

    Article  MathSciNet  Google Scholar 

  5. Zhang, S., Gao, T.: A coding and substitution frame based on hyper-chaotic systems for secure communication. Nonlinear Dyn. 84(2), 833–849 (2016)

    Article  MathSciNet  Google Scholar 

  6. Wong, L., Song, H., Liu, P.: A novel hybrid color image encryption algorithm using two complex chaotic systems. Opt. Lasers Eng. 77, 118–125 (2016)

    Article  Google Scholar 

  7. Li, X., Wang, L., Yan, Y., Liu, P.: An improvement color image encryption algorithm based on DNA operations and real and complex chaotic systems. Optik. 127(5), 2558–2565 (2016)

    Article  Google Scholar 

  8. Liu, P., Song, H., Li, X.: Observe-based projective synchronization of chaotic complex modified Van Der Pol-Duffing oscillator with application to secure communication. J. Comput. Nonlinear Dyn. 10, 051015-7 (2015)

    Google Scholar 

  9. Hamdi, M., Rhouma, R., Belghith, S.: A selective compression-encryption of images based on SPIHT coding and Chirikov Standard Map. Signal Process. 131, 514–526 (2017)

    Article  Google Scholar 

  10. Hamiche, H., Lahdir, M., Tahanout, M., Djennoune, S.: Masking digital image using a novel technique based on a transmission chaotic system and SPIHT coding algorithm. Int. J. Adv. Comput. Sci. Appl. 3(12), 228–234 (2012)

  11. Pecora, L.M., Carrol, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yau, H.T., Pu, Y.C., Li, S.C.: Application of a chaotic synchronization system to secure communication. Inf. Technol. Control 41, 274–282 (2012)

    Google Scholar 

  13. Hamiche, H., Guermah, S., Saddaoui, R., Hannoun, K., Laghrouche, M., Djennoune, S.: Analysis and implementation of a novel robust transmission scheme for private digital communications using Arduino Uno board. Nonlinear Dyn. 81(4), 1921–1932 (2015)

    Article  MathSciNet  Google Scholar 

  14. Morgül, Ö., Solak, E.: Observer based synchronization of chaotic systems. Phys. Rev. E 5, 4803–4811 (1996)

    Article  Google Scholar 

  15. Nijmeijer, H., Mareels, I.M.Y.: An observer looks at synchronization. IEEE Trans. Circuits Syst. I. Fundam. Theory Appl. 44, 882–890 (1997)

    Article  MathSciNet  Google Scholar 

  16. Petráš, I.: Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation. Higher Education Press, Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  17. Guermah, S., Bettayeb, M., Djennoune, S.: Controllability and the observability of linear discrete-time fractional-order systems. Int. J. Appl. Math. Comput. Sci. 18, 213–222 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Atici, F.M., Senguel, S.: Modeling with fractional difference equations. J. Math. Anal. Appl. 369, 1–9 (2010)

    Article  MathSciNet  Google Scholar 

  19. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and application of fractional differential equations. In: van Mill, J. (ed.) North Holland Mathematics Studies. Elsevier, Amsterdam (2006)

    Google Scholar 

  20. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-Order Systems and Control. Fundamentals and Applications. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  21. Wu, G.C., Baleanu, D.: Discrete fractional logistic map and its chaos. Nonlinear Dyn. 75, 283–287 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu, G.C., Baleanu, D.: Chaos synchronization of the discrete fractional logistic map. Signal Process. 102, 96–99 (2014)

    Article  Google Scholar 

  23. Liu, Y.: Discrete Chaos in Fractional Henon Maps. Int. J. Nonlinear Sci. 18, 170–175 (2014)

    MathSciNet  Google Scholar 

  24. Hu, J.B., Zhao, L.D.: Finite-time synchronization of fractional-order Chaotic Volta Systems with nonidentical orders. Math. Probl. Eng. (2013). doi:10.1155/2013/264136

    Google Scholar 

  25. Wu, G.C., Baleanu, D., Zeng, S.D.: Discrete chaos in fractional sine and standard maps. Phys. Lett. A 378, 484–487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5, 367–386 (2002)

    MathSciNet  MATH  Google Scholar 

  27. El Gammoudi, I., Feki, M.: Synchronization of integer-order and fractional-order Chua’s systems using Robust observer. Commun. Nonlinear Sci. Numer. Simul. 18, 625–638 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kiani-B, A., Fallahi, K., Pariz, N., Leung, H.: A chaotic Secure communication scheme using fractional chaotic based on an extended fractional Kalman filter. Commun. Nonlinear Sci. Numer. Simul. 14, 863–879 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hegazi, A.S., Ahmed, E., Matouk, A.E.: On chaos control and synchronization of the commensurate fractional-order Liu system. Commun. Nonlinear Sci. Numer. Simul. 18, 1193–1202 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Martinez-Guerra, R., Prez-Pinacho, C.A., Gómez-Corts, G.C.: Synchronization of Integral and Fractional Order Chaotic Systems: Adifferential Algebraic and Differential Geometric Approach Withselected Application in Real-Time. Understanding Complex System, Springer, Berlin (2015)

    Book  Google Scholar 

  31. Hamiche, H., Kassim, S., Djennoune, S., Guermah, S., Lahdir, M., Bettayeb, M.: Secure data transmission scheme based on fractional-order discrete chaotic system. In: International Conference on Control, Engineering and Information Technology (CEIT’2015). Tlemcen, Algeria (2015)

  32. Xu, Y., Wang, H., Li, Y., Pei, B.: Image encryption based on synchronisation of fractional chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 19, 3735–3744 (2014)

  33. Zhao, J., Wang, S., Chang, Y., Li, X.: A novel image encryption scheme based on an improper fractional-order chaotic system. Nonlinear Dyn. 80, 1721–1729 (2015)

    Article  MathSciNet  Google Scholar 

  34. Wang, Y.Q., Zhou, S.B.: Image encryption algorithm based on fractional-order Chen chaotic system. J. Comput. Appl. 33(4), 1043–1046 (2013)

    Google Scholar 

  35. Kassim, S., Megherbi, O., Hamiche, H., Djennoune, S., Lahdir, M., Bettayeb, M.: Secure image transmission scheme using hybrid encryption method. In: International Conference on Automatic Control. Telecommunications and Signals (ICATS’2015). Annaba, Algeria (2015)

  36. Dzielinski, A., Sierociuk, D.: Adaptive feedback control of fractional order discrete state-space systems. In: Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA,IAWTIC,05). Vienna Austria, pp. 804–809 (2005)

  37. Nijmeijer, H., van der Schaft, A.J.: Nonlinear Dynamical Control Systems. Springer, New York (1990)

    Book  MATH  Google Scholar 

  38. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica 16D, 285–317 (1985)

    MathSciNet  MATH  Google Scholar 

  39. Perruquetti, W., Barbot, J.-P.: Chaos in Automatic Control. CRC Press, Boca Raton (2006)

    Google Scholar 

  40. Sira-Ramirez, H., Rouchon, P.: Exact delayed reconstruction in nonlinear discrete-time system. In: European Union Nonlinear Control Network Workshop. June 25–27th. Sheffield. England (2001)

  41. Hamiche, H., Ghanes, M., Barbot, J.P., Kemih, K., Djennoune, S.: Hybrid dynamical systems for private digital communications. Int. J. Model. Identif. Control 20, 99–113 (2013)

    Article  Google Scholar 

  42. Hamiche, H., Ghanes, M., Barbot, J.P., Kemih, K., Djennoune, S.: Chaotic synchronisation and secure communication via sliding-mode and impulsive observers. Int. J. Model. Identif. Control 20(4), 305–318 (2013)

    Article  Google Scholar 

  43. Djemaï, M., Barbot, J.-P., Belmouhoub, I.: Discrete-time normal form for left invertibility problem. Eur. J. Control 15, 194–204 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhao, L., Adhikari, A., Xiao, D., Sakurai, K.: On the security analysis of an image scrambling encryption of pixel bit and its improved scheme based on self-correlation encryption. Commun. Nonlinear Sci. Numer. Simul. 17(8), 3303–3327 (2012)

    Article  MathSciNet  Google Scholar 

  45. Jolfaei, A., Mirghadri, A.: Image encryption using chaos and block cipher. Comput. Inf. Sci. 4(1), 172–185 (2011)

    Google Scholar 

  46. El Assad, S., Farajallah, M.: A new chaos-based image encryption scheme. Signal Process. Image Commun. 41, 144–157 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Kassim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kassim, S., Hamiche, H., Djennoune, S. et al. A novel secure image transmission scheme based on synchronization of fractional-order discrete-time hyperchaotic systems. Nonlinear Dyn 88, 2473–2489 (2017). https://doi.org/10.1007/s11071-017-3390-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3390-8

Keywords

Navigation