Skip to main content
Log in

Constructal Design of a Converter Steelmaking Procedure Based on Multi-objective Optimization

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Constructal theory and finite time thermodynamics are introduced into generalized constructal optimization of a converter steelmaking procedure (CSMP) in this paper. A complex function considering molten steel yield (MSY) and useful energy (UE) is taken as the optimization objective. The total raw material cost (TRMC) is fixed. The optimal raw material cost distribution is obtained. The influences of hot metal composition contents, hot metal temperature, steel slag basicity, and price ratio of the waste steel to sinter ore on the optimal performance are analyzed. After optimization, the complex function, the MSY and the UE are improved by 2.67, 2.21 and 3.12%, respectively. Obviously, the performance of the CSMP is improved in certain degree. Decreasing the contents of silicon, phosphorus, manganese and price ratio of the waste steel to sinter ore and increasing the steel slag basicity properly increase complex function. Furthermore, the MCF reaches its twice maximum by optimizing hot metal temperature, the pressure ratio and the relative pressure drop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Area (m\(^{2}\))

a :

Ratio (%)

C :

Cost

c :

Specific heat capacity

D :

Dosage (kg)

\(\tilde{D}\) :

Dimensionless dosage

h :

Specific enthalpy (J/kg)

k :

Weighting coefficient

m :

Mass (kg)

F :

Complex function

P :

Power (W)

p :

Pressure (MPa); price ($)

Q :

Heat (J)

\(Q_\mathrm{elc} \) :

Electricity (J)

q :

Heat value (J/m\(^{3}\))

\(R_{\mathrm{g}} \) :

Gas constant (J/kg K)

T :

Temperature (\(^{\circ }{\hbox {C}}\))

t :

Time (min)

V :

Volume (\(\hbox {Nm}^{3}\))

Y :

Yield (kg)

\(\tilde{Y}\) :

Dimensionless yield

\(\textit{YR}\) :

Element yield rate

\(\gamma \) :

Specific heat ratio

\(\eta \) :

Efficient, rate

\(\tau \) :

Temperature ratio

\(\pi \) :

Pressure ratio

\(\rho \) :

Density (g/m\(^3\))

\(\omega \) :

Content

\(\zeta \) :

Pressure loss coefficient

ac:

Air compressor

air:

Air

bld:

Brayton cycle

bg:

Burnt gas

cg:

Converter gas

ct:

Converter

dol:

Dolomite

eps:

Endpoint molten steel

elc:

Electricity

env:

Environment

FeSi:

Ferrosilicon

FeMn:

Ferromanganese

fines:

Coke fines

gas:

Converter gas

gc:

Gas compressor

hm:

Hot metal

lime:

Lime

oxy:

Oxygen

ore:

Iron ore

slag:

Steel slag

sinter:

Sinter ore

soot:

Soot

st1, st2:

Steam turbine

steam:

Steam

t:

Turbine

water:

Water

ws:

Waste steel

References

  1. Lin, B.Q.; Wang, X.L.: Carbon emissions from energy intensive industry in China: evidence from the iron & steel industry. Renew. Sustain. Energy Rev. 47, 746–754 (2015)

    Article  Google Scholar 

  2. Chen, L.G.; Yang, B.; Shen, X.; Xie, Z.H.; Sun, F.R.: Thermodynamic optimization opportunities for the recovery and utilization of residual energy and heat in China steel industry: a case study. Appl. Therm. Eng. 86, 151–160 (2015)

    Article  Google Scholar 

  3. Wang, X.L.; Lin, B.Q.: How to reduce CO\(_2\) emissions in China’s iron and steel industry. Renew. Sustain. Energy Rev. 57, 1496–1505 (2016)

    Article  Google Scholar 

  4. Morfeldta, J.; Nijsbc, W.; Silveiraa, S.: The impact of climate targets on future steel production—an analysis based on a global energy system model. J. Clean. Prod. 103, 469–482 (2015)

    Article  Google Scholar 

  5. André, C.S.; Zenaida, S.M.; Jonathan, N.; Jonathan, M.C.; Julian, M.A.: The influence of UK emissions reduction targets on the emissions of the global steel industry. Resour. Conserv. Recycl. 107, 174–184 (2016)

    Article  Google Scholar 

  6. Long, Y.G.; Pan, J.Y.; Farooq, S.; Boer, H.: A sustainability assessment system for Chinese iron and steel firms. J. Clean. Prod. 125, 133–144 (2016)

    Article  Google Scholar 

  7. Diao, J.; Zhou, W.; Ke, Z.Q.; Qiao, Y.; Zhang, T.; Liu, X.; Xie, B.: System assessment of recycling of steel slag in converter steelmaking. J. Clean. Prod. 125, 159–167 (2016)

    Article  Google Scholar 

  8. Olmez, G.M.; Dilek, F.B.; Karanfil, T.; Yetis, U.: The environmental impacts of iron and steel industry: a life cycle assessment study. J. Clean. Prod. 130, 195–201 (2016)

    Article  Google Scholar 

  9. Kuramochi, T.: Assessment of midterm CO\(_{2}\) emissions reduction potential in the iron and steel industry: a case of Japan. J. Clean. Prod. 132, 81–97 (2016)

    Article  Google Scholar 

  10. Pan, S.Y.; Adhikari, R.; Chen, Y.H.; Li, P.; Chiangad, P.C.: Integrated and innovative steel slag utilization for iron reclamation, green material production and CO\(_{2}\) fixation via accelerated carbonation. J. Clean. Prod. 137, 617–631 (2016)

    Article  Google Scholar 

  11. Wang, X.L.; Lin, B.Q.: Factor and fuel substitution in China’s iron & steel industry: evidence and policy implications. J. Clean. Prod. 141, 751–759 (2017)

    Article  Google Scholar 

  12. Rong, A.Y.; Risto, L.: Fuzzy chance constrained linear programming model for optimizing the scrap charge in steel production. Eur. J. Oper. Res. 186, 953–964 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yang, L.Z.; Zhu, R.; Xiao, F.H.; Dong, K.; Zhang, W.; Zhang, Y.H.: Research on optimization of burden design of BOF. Ind. Heat. 40(6), 30–32 (2011) (in Chinese)

    Google Scholar 

  14. Gawron, M.; Adamczyk, C.: Optimization algorithms in the charge planning for the BOF Plant. J. Achiev. Mater. Manuf. Eng. 55(2), 483–487 (2012)

    Google Scholar 

  15. Lu, B.H.; Li, Y.K.; Qu, B.Z.: Optimization research on converter steelmaking process parameters based on DOE. Key Eng. Mater. 579(580), 128–132 (2014)

    Google Scholar 

  16. Zhang, J.: Optimal control problem of converter steelmaking production process based on operation optimization method. Discrete Dyn. Nat. Soc. (2016). https://doi.org/10.1155/2015/483674

  17. Maruoka, N.; Akiyama, T.: Heat recovery of LDG by utilizing latent heat and reaction heat for producing methanol. ISIJ Int. 42(11), 1189–1195 (2002)

    Article  Google Scholar 

  18. Corrêa Abreu, G.; Morimoto, T.; Rossi, L.A.: Electric power co-generation by LDG recovery. CDM Project. La Revue de Métallurgie 104(11), 551–554 (2007)

  19. Malvoisin, B.; Brunet, F.; Carlut, J.; Montes-Hernandez, G.; Findling, N.; Lanson, M.; et al.: High-purity hydrogen gas from the reaction between BOF steel slag and water in the 473–673 K range. Int. J. Hydrogen Energy 38, 7382–7393 (2013)

    Article  Google Scholar 

  20. Chen, L.G.; Yang, B.; Xie, Z.H.; Wang, W.H.; Sun, F.R.: FTT modeling optimization of an open gas turbine CCHP plant driven by basic oxygen furnace gas. China Metal. 24(5), 50–58 (2014) (in Chinese)

    Google Scholar 

  21. Tobo, H.; Ta, Y.; Kuwayama, M.; Hagio, Y.; Yabuta, K.; Tozawa, H.; et al.: Development of continuous steelmaking slag solidification process suitable for sensible heat recovery. ISIJ Int. 55(4), 894–903 (2015)

    Article  Google Scholar 

  22. Bejan, A.: Constructal-theory network of conducting paths for a cooling a heat generating volume. Int. J. Heat Mass Transf. 4(40), 799–816 (1997)

    Article  MATH  Google Scholar 

  23. Bejan, A.: Shape and Structure, from Engineering to Nature. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  24. Bejan, A.; Lorente, S.: Constructal theory of generation of configuration in nature and engineering. J. Appl. Phys. 100(4), 41301 (2006)

    Article  Google Scholar 

  25. Bejan, A.; Lorente, S.: Design with Constructal Theory. Wiley, Hoboken (2008)

    Book  Google Scholar 

  26. Lorenzini, G.; Moretti, S.; Conti, A.: Fin Shape Thermal Optimization Using Bejan’s Constructal Theory. Morgan & Claypool Publishers, San Rafael (2011)

    Google Scholar 

  27. Chen, L.G.: Progress in study on constructal theory and its application. Sci. China Technol. Sci. 55(3), 802–820 (2012)

    Article  Google Scholar 

  28. Lorenzini, G.; Biserni, C.; Garcia, F.L.; Rocha, L.A.O.: Geometric optimization of a convective T-shaped cavity on the basis of constructal theory. Int. J. Heat Mass Transf. 55(23–24), 6951–6958 (2012)

    Article  Google Scholar 

  29. Hajmohammadi, M.R.; Poozesh, S.; Salman Nourazar, S.; Habibi, Manesh A.: Optimal architecture of heat generating pieces in a fin. J. Mech. Sci. Technol. 27(4), 1143–1149 (2013)

    Article  Google Scholar 

  30. Bejan, A.; Lorente, S.: Constructal law of design and evolution: physics, biology, technology, and society. J. Appl. Phys. 113(15), 151301 (2013)

    Article  Google Scholar 

  31. Li, Y.L.; Zhang, F.L.; Sunden, B.; Xie, G.N.: Laminar thermal performance of microchannel heat sinks with constructal vertical Y-shaped bifurcation plates. Appl. Therm. Eng. 73, 185–195 (2014)

    Article  Google Scholar 

  32. Estrada, E.S.D.; Fagundes, T.M.; Isoldi, L.A.; dos Santos, E.D.; Xie, G.N.; Rocha, L.A.O.: Constructal design associated to genetic algorithm of asymmetric V-shaped pathways. Trans. ASME. J. Heat Transf. 137(6), 061010 (2015)

    Article  Google Scholar 

  33. Lorenzini, G.; Estrada, E.S.D.; Dos Santos, E.D.; Isoldi, L.A.; Rocha, L.A.O.: Constructal design of convective cavities inserted into a cylindrical solid body for cooling. Int. J. Heat Mass Transf. 83, 75–83 (2015)

    Article  Google Scholar 

  34. Hajmohammadi, M.R.; Lorenzini, G.; Joneydi Shariatzadeh, O.; Biserni, C.: Evolution in the design of V-shaped highly conductive pathways embedded in a heat-generating piece. Trans. ASME J. Heat Transf. 137(6), 061001 (2015)

    Article  Google Scholar 

  35. Lui, C.H.; Fong, N.K.; Lorente, S.; Bejan, A.; Chow, W.K.: Constructal design of evacuation from a three-dimensional living space. Physica A 422, 47–57 (2015)

    Article  Google Scholar 

  36. Bejan, A.: Constructal law: optimization as design evolution. Trans. ASME J. Heat Transf. 137(6), 61003 (2015)

    Article  Google Scholar 

  37. Bejan, A.: The Physics of Life: The Evolution of Everything. St. Martin’s Press, New York (2016)

    Google Scholar 

  38. Bejan, A.: Constructal thermodynamics. Int. J. Heat Technol. 34(S1), 1–8 (2016)

    Article  Google Scholar 

  39. Bejan, A.; Ziaei, S.; Lorente, S.: Distributed energy storage: time-dependent tree flow design. J. Appl. Phys. 119(18), 184901 (2016)

    Article  Google Scholar 

  40. Bejan, A.; Errera, M.R.: Complexity, organization, evolution, and constructal law. J. Appl. Phys. 119(7), 074901 (2016)

    Article  Google Scholar 

  41. Chen, L.G.; Feng, H.J.: Multi-objective Constructal Optimizations for Fluid Flow, Heat and Mass Transfer Processes. Science Press, Beijing (2016) (in Chinese)

    Google Scholar 

  42. Bejan, A.: Life and evolution as physics. Commun. Integr. Biol. 9(3), e1172159 (2016)

    Article  Google Scholar 

  43. Feng, H.J.; Chen, L.G.; Xie, Z.H.: Multi-disciplinary, multi-objective and multi-scale constructal optimizations for heat and mass transfer processes performed in Naval University of Engineering, a review. Int. J. Heat Mass Transf. 115(Part B), 86–98 (2017)

    Article  Google Scholar 

  44. Feng, H.J.; Chen, L.G.; Xie, Z.H.; Sun, F.R.: Thermal insulation constructal optimization for steel rolling reheating furnace wall based on entransy dissipation extremum principle. Sci. China Technol. Sci. 55(12), 3322–3333 (2012)

    Article  Google Scholar 

  45. Kang, D.H.; Lorente, S.; Bejan, A.: Constructal distribution of multi-layer insulation. Int. J. Energy Res. 37(2), 153–160 (2013)

    Article  Google Scholar 

  46. Feng, H.J.; Chen, L.G.; Xie, Z.H.; Sun, F.R.: Constructal entransy dissipation rate minimization for variable cross-section insulation layer of the steel rolling reheating furnace wall. Int. Commun. Heat Mass Transf. 52, 26–32 (2014)

    Article  Google Scholar 

  47. Feng, H.J.; Chen, L.G.; Xie, Z.H.; Sun, F.R.: Constructal entransy optimizations for insulation layer of steel rolling reheating furnace wall with convective and radiative boundary conditions. Chin. Sci. Bull. 59(20), 2470–2477 (2014)

    Article  Google Scholar 

  48. Feng, H.J.; Chen, L.G.; Xie, Z.H.; Sun, F.R.: Generalized constructal optimization for solidification heat transfer process of slab continuous casting based on heat loss rate. Energy 66, 991–998 (2014)

    Article  Google Scholar 

  49. Feng, H.J.; Chen, L.G.; Xie, Z.H.; Sun, F.R.: Constructal designs for insulation layers of steel rolling reheating furnace wall with convective and radiative boundary conditions. Appl. Therm. Eng. 100, 925–931 (2016)

    Article  Google Scholar 

  50. Feng, H.J.; Chen, L.G.; Liu, X.; Xie, Z.H.; Sun, F.R.: Constructal optimization of a sinter cooling process based on exergy output maximization. Appl. Therm. Eng. 96, 161–166 (2016)

    Article  Google Scholar 

  51. Liu, X.; Chen, L.G.; Feng, H.J.; Sun, F.R.: Constructal design for blast furnace wall based on the entransy theory. Appl. Therm. Eng. 100, 798–804 (2016)

    Article  Google Scholar 

  52. Liu, X.; Chen, L.G.; Feng, H.J.; Sun, F.R.: Hot metal yield optimization of a blast furnace based on constructal theory. Energy 104, 33–41 (2016)

    Article  Google Scholar 

  53. Liu, X.; Feng, H.J.; Chen, L.G.; Qin, X.Y.; Sun, F.R.: Constructal design of a blast furnace iron-making process based on multi-objective optimization. Energy 109, 137–151 (2016)

    Article  Google Scholar 

  54. Chen, L.G.; Liu, X.; Feng, H.J.; Ge, Y.L.; Xie, Z.H.: Molten steel yield optimization of a converter based on constructal theory. Sci. China Technol. Sci. (2018). https://doi.org/10.1007/s11431-017-9162-y

    Google Scholar 

  55. Feng, H.J.; Chen, L.G.; Xie, Z.H.; Ding, Z.M.; Sun, F.R.: Generalized constructal optimization for secondary cooling process of slab continuous casting based on entransy theory. Sci. China Technol. Sci. 57(4), 784–795 (2014)

    Article  Google Scholar 

  56. Feng, H.J.; Chen, L.G.; Liu, X.; Xie, Z.H.; Sun, F.R.: Generalized constructal optimization of strip laminar cooling process based on entransy theory. Sci. China Technol. Sci. 59(11), 1687–1695 (2016)

    Article  Google Scholar 

  57. Radcenco, V.; Vargas, J.V.C.; Bejan, A.: Thermodynamic optimization of a gas turbine power plant with pressure drop irreversibilities. Trans. ASME J. Energy Res. 120(3), 233–240 (1998)

    Article  Google Scholar 

  58. Chen, L.G.; Li, Y.; Sun, F.R.; Wu, C.: Power optimization of open-cycle regenerator gas-turbine power plants. Appl. Energy 78(2), 199–218 (2004)

    Article  Google Scholar 

  59. Wang, W.H.; Chen, L.G.; Sun, F.R.: Performance optimization of an open-cycle intercooled gas turbine power plant with pressure drop irreversibilities. J. Energy Inst. 81(1), 31–37 (2008)

    Article  Google Scholar 

  60. Zhang, W.; Chen, L.; Sun, F.: Power and efficiency optimization for combined Brayton and inverse Brayton cycles. Appl. Therm. Eng. 29(14–15), 2885–2894 (2009)

    Article  Google Scholar 

  61. Chen, L.G.; Zhang, Z.L.; Sun, F.R.: Thermodynamic modelling for open combined regenerative Brayton and inverse Brayton cycles with regeneration before the inverse cycle. Entropy 14(1), 58–73 (2012)

    Article  MATH  Google Scholar 

  62. Zhang, Z.L.; Chen, L.G.; Yang, B.; Ge, Y.L.; Sun, F.R.: Thermodynamic analysis and optimization of an air Brayton cycle for recovering waste heat of blast furnace slag. Appl. Therm. Eng. 90, 748–942 (2015)

    Google Scholar 

  63. Chen, L.G.; Wang, W.H.; Sun, F.R.: Thermodynamic optimization of a triple-shaft open intercooled-recuperated gas turbine cycle. Part 1, Description and modeling. Int. J. Low-Carbon Technol. 11(1), 29–34 (2016)

    Article  Google Scholar 

  64. Wang, W.H.; Chen, L.G.; Sun, F.R.: Thermodynamic optimization of a triple-shaft open intercooled-recuperated gas turbine cycle. Part 2, Power and efficiency optimization. Int. J. Low-Carbon Technol. 11(1), 1–7 (2016)

    Google Scholar 

  65. Açıkkalp, E.; Yamik, H.: Modeling and optimization of maximum available work for irreversible gas power cycles with temperature dependent specific heat. J. Non-Equilib. Thermodyn. 40(1), 25–39 (2015)

    Google Scholar 

  66. Açıkkalp, E.: Methods used for evaluation actual power generating thermal cycles and comparing them. Int. J. Electr. Power Energy Syst. 69, 85–89 (2015)

    Article  Google Scholar 

  67. Bi, Y.H.; Chen, L.G.: Finite Time Thermodynamic Optimization for Air Heat Pumps. Science Press, Beijing (2017) (in Chinese)

    Google Scholar 

  68. Chen, L.G.; Xia, S.J.: Generalized Thermodynamic Dynamic-Optimization for Irreversible Processes. Science Press, Beijing (2017) (in Chinese)

    Google Scholar 

  69. Chen, L.G.; Xia, S.J.: Generalized Thermodynamic Dynamic-Optimization for Irreversible Cycles—Thermodynamic and Chemical Theoretical Cycles. Science Press, Beijing (2017) (in Chinese)

    Google Scholar 

  70. Chen, L.G.; Xia, S.J.: Generalized Thermodynamic Dynamic-Optimization for Irreversible Cycles-Engineering Thermodynamic Plants and Generalized Engine Cycles. Science Press, Beijing (2017) (in Chinese)

    Google Scholar 

  71. Andresen, B.; Berry, R.S.; Ondrechen, M.J.; Salamon, P.: Thermodynamics for processes in finite time. Acc. Chem. Res. 17(8), 266–271 (1984)

    Article  Google Scholar 

  72. Bejan, A.: Entropy Generation Minimization. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  73. Bejan, A.: Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J. Appl. Phys. 79(3), 1191–1218 (1996)

    Article  Google Scholar 

  74. Andresen, B.: Finite-time thermodynamics and thermodynamic length. Rev. Gen. Therm. 35(418/419), 647–650 (1996)

    Article  Google Scholar 

  75. Hoffmann, K.H.; Burzler, J.M.; Schubert, S.: Endoreversible thermodynamics. J. Non-Equilib. Thermodyn. 22(4), 311–355 (1997)

    MATH  Google Scholar 

  76. Chen, L.G.; Wu, C.; Sun, F.R.: Finite time thermodynamic optimization or entropy generation minimization of energy systems. J. Non-Equilib. Thermodyn. 24(4), 327–359 (1999)

    Article  MATH  Google Scholar 

  77. Sieniutycz, S.; Jezowski, J.: Energy Optimization in Process Systems and Fuel Cells. Elsevier, Oxford (2013)

    Google Scholar 

  78. Ahmadi, M.H.; Ahmadi, M.A.; Sadatsakkak, S.A.: Thermodynamic analysis and performance optimization of irreversible Carnot refrigerator by using multi-objective evolutionary algorithms (MOEAs). Renew. Sustain. Energy Rev. 51, 1055–1070 (2015)

    Article  Google Scholar 

  79. Meng, F.K.; Chen, L.G.; Sun, F.R.; Yang, B.: Thermoelectric power generation driven by blast furnace slag flushing water. Energy 66, 965–972 (2014)

    Article  Google Scholar 

  80. Xiong, B.; Chen, L.G.; Meng, F.K.; Sun, F.R.: Modeling and performance analysis of a two-stage thermoelectric energy harvesting system from blast furnace slag water waste heat. Energy 77, 562–569 (2014)

    Article  Google Scholar 

  81. Yang, B.; Chen, L.G.; Ge, Y.L.; Sun, F.R.: Exergy performance analysis of an irreversible two-stage intercooled regenerative reheated closed Brayton CHP plant. Int. J. Energy 14(4), 459–483 (2014)

    Google Scholar 

  82. Yang, B.; Chen, L.G.; Ge, Y.L.; Sun, F.R.: Exergy analyses of an endoreversible closed regenerative Brayton cycle CCHP plant. Int. J. Energy Environ. 5(6), 655–668 (2014)

    Google Scholar 

  83. Liu, X.; Qin, X.Y.; Chen, L.; Sun, F.R.: \(\text{ CO }_{2}\) emission optimization for a blast furnace considering plastic injection. Int. J. Energy Environ. 6(2), 175–190 (2015)

    Google Scholar 

  84. Zhang, Z.L.; Chen, L.G.; Ge, Y.L.; Sun, F.R.: Thermodynamic analysis of an air Brayton cycle for recovering waste heat of BF slag. Appl. Therm. Eng. 90, 742–748 (2015)

    Article  Google Scholar 

  85. Wang, X.H.: Ferrous Metallurgy-Steelmaking. Higher Education Press, Beijing (2007) (in Chinese)

    Google Scholar 

  86. Qi, Y.H.; Gan, L.; Wang, H.F.; Zhang, C.X.; Yan, D.L.: Development process and trend of the waste heat recovery technique of the molten blast furnace slag. Iron Steel 47(4), 1–8 (2012) (in Chinese)

    Google Scholar 

  87. Li, Y.: Full recovery and reasonable utilization of converter flue gas residual-heat resource. Master Thesis, Shenyang: Northeastern University, 2009 (in Chinese)

  88. Wang, B.: Thermal balance analysis of heat recovery system for molten steel slag. In: 2010 National Energy and Thermal Power Conference, 2015, Xiamen, People’s Republic of China (in Chinese)

  89. Chen, L.G.; Feng, H.J.; Xie, Z.H.: Generalized thermodynamic optimization for iron and steel production processes: a theoretical exploration and application cases. Entropy 18(10), 353 (2016)

    Article  Google Scholar 

  90. Feng, H.J.; Chen, L.G.; Liu, X.; Xie, Z.H.: Constructal design for an iron and steel production process based on the objectives of steel yield and useful energy. Int. J. Heat Mass Transf. 111, 1192–1205 (2017)

    Article  Google Scholar 

  91. Chen, L.G.; Feng, H.J.; Xie, Z.H.; Jiang, Z.Y.; Gao, F.; Xu, A.J.; Zhang, X.X.: Interaction mechanism among material flows, energy flows and environment and generalized thermodynamic optimizations for iron and steel production processes. Sci. Sin. Technol. (2018). https://doi.org/10.1360/N092017-00038

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Feng, H. & Chen, L. Constructal Design of a Converter Steelmaking Procedure Based on Multi-objective Optimization. Arab J Sci Eng 43, 5003–5015 (2018). https://doi.org/10.1007/s13369-018-3115-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3115-4

Keywords

Navigation