Skip to main content
Log in

Conjugate Natural Convection of Nanofluids in an Enclosure with a Volumetric Heat Source

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This article presents a numerical investigation of conjugate natural convection of water-based nanofluids in a square cavity. Two different types of nanofluids, namely Al2O3–water and CuO–water are considered as the working fluids. A square volumetric heat generating source is located within the cavity, resembling a heat generating electronic device. All the cavity walls are considered to be adiabatic except the right-hand side wall which is at the cold temperature. Transport equations for Newtonian fluid have been solved numerically, using finite volume method. The effects of relevant parameters such as Rayleigh number (103 ≤ Ra ≤ 106), type of nanofluid, solid volume fraction of the nanoparticles, and the location of the heat source on the cooling performance of the cavity have been studied. The results show that in natural convection flows, nanofluids are more effective in heat transfer enhancement for moderate values of Rayleigh number and low values of solid particles volume fractions. In addition, to maximize the heat transfer performance, the best placement of heat source has been determined. Also it is shown that CuO–water nanofluid exhibits elevated thermal performance in comparison with Al2O3–water nanofluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B :

Length of inner body

C :

Experimental constant (Eq. (9))

C p :

Specific heat capacity (J kg−1 K−1)

d :

Diameter (m)

F(Ω):

Step function

g :

Gravitational acceleration (m s−2)

H :

Vertical wall length (m)

k :

Thermal conductivity (Wm−1 K−1)

k B :

Boltzmann constant = 1.38066 × 10−23 J K−1

L :

Horizontal wall length (m)

l x :

Horizontal distance of inner body

l y :

Vertical distance of inner body

M :

Molecular weight of the base fluid

N :

Avogadro number = 6.022 × 1023 mol−1

n :

Either X or Y  (Eq. (19))

Nu:

Nusselt number

Num :

Average Nusselt number

p :

Pressure (N/m2)

P :

Dimensionless pressure (pnf U 20 )

Pe:

Peclet number (u p d p /α f)

Pr:

Prandtl number (υ f /α f)

q′′′:

Heat generation of heat source

Ra:

Rayleigh number (β gH 3ΔT/(υ f α f))

R k :

Thermal conductivity ratio (k s /k nf)

T :

Temperature (K)

u, v :

Velocity components in x, y directions (ms−1)

u s :

Brownian motion velocity (ms−1)

U, V :

Dimensionless velocity components (u/ U 0,v/ U 0)

x, v :

Cartesian coordinates (m)

X, Y :

Dimensionless coordinates (x/ Hy/ H)

α :

Thermal diffusivity (m2 s−1)

β :

Thermal expansion coefficient (K−1)

Δ:

Difference

\({\phi}\) :

Solid volume fraction

λ :

Viscosity ratio

μ :

Dynamic viscosity (Ns m−2)

υ :

Kinematic viscosity (m2 s−1

θ :

Dimensionless temperature (TT C )/ΔT

ρ :

Density (kg m−3)

0:

Reference

c:

Cold wall

eff:

Effective

eq:

Equivalent

f:

Fluid (pure)

i:

Representative of solid or fluid

max:

Maximum

nf:

Nanofluid

p:

Nanoparticle

s:

Solid region

References

  • Chandrasekar M., Suresh S.: A Review on the mechanisms of heat transport in nanofluids. Heat Transf. Eng. 30(14), 1136–1150 (2009)

    Article  Google Scholar 

  • Das, S.k.; Choi, S.U.S.; Yu, W.; Pradeep, T.: Nanofluid Science and Technology. Wiley, New Jersey (2008)

  • Masuda, H.; Ebata, A.; Teramae, K.; Hishinuma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ−Al2O3, SiO2 and TiO2 ultra-fine particles). Netsu Bussei. 4, 227–233 (1993)

    Google Scholar 

  • Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles, in developments and applications of non-newtonian flows. FED 231/MD 66, 99–103 (1995)

    Google Scholar 

  • Eastman, J.A.; Choi, S.U.S.; Li, S.; Thompson, L.J.; Lee, S.: Enhanced thermal conductivity through the development of nanofluids. In: Materials Research Society Symposium Proceedings, vol. 457, pp. 3–11. Materials Research Society. Pittsburgh (1997)

  • Wang, X.; Xu, X.; Choi, S.U.S.: Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Transf. 13, 474–480 (1999)

    Google Scholar 

  • Lee, S.; Choi, S.U S.; Li, S.; Eastman, J.A.: Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transf. 121, 280–289 (1999)

  • Xuan, Y.; Li, Q.: Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 21, 58–64 (2000)

    Google Scholar 

  • Philip, J.; Laskar, J.M.; Raj, B.: Magnetic field induced extinction of light in a suspension of Fe3O4 nanoparticles. Appl. Phys. Lett. 92 (2008)

  • Maxwell, J.C.: Treatise on Electricity and Magnetism. Clarendon Press, Oxford (1873)

  • Hamilton, R.L.; Crosser, O.K.: Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1, 187–191 (1962)

    Google Scholar 

  • Yu, W.; Choi, S.U.S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids, a renovated Maxwell model. J. Nanopart. Res. 5, 171–167 (2003)

    Google Scholar 

  • Xuan, Y.; Li, Q.; Hu, W.: Aggregation structure and thermal conductivity of nanofluids. AICHE J. 49, 1038–1043 (2003)

    Google Scholar 

  • Koo, J.; Kleinstreuer, C.: A new thermal conductivity model for nanofluids. J. Nanopart. Res. 6, 577–588 (2004)

    Google Scholar 

  • Koo, J.; Kleinstreuer, C.: Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. Int. Commun. Mass Transf. 32, 1111–1118 (2005)

    Google Scholar 

  • Jang, S.P.; Choi, S.U.S.: Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 84, 4316–4318 (2004)

    Google Scholar 

  • Jang, S.P.; Choi, S.U.S.: Effects of various parameters on nanofluid thermal conductivity. J. Heat Transf. 129, 618–623 (2007)

    Google Scholar 

  • Hemanth, K.D.; Patel, H.E.; Rajeev Kumar, V.R.; Sundararajan, T.; Pradeep, T.; Das, S.K.: Model for heat conduction in nanofluids. Phys. Rev. Lett. 93, 144301-1-4 (2004)

    Google Scholar 

  • Prasher, R.; Bhattacharya, P.; Phelan, P.E.: Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys. Rev. Lett. 94, 025901 (2005)

    Google Scholar 

  • Xie, H.; Fujii, M.; Zhang, X.: Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid. Int. J. Heat Mass Transf. 48, 2926–2932 (2005)

    Google Scholar 

  • Patel, H.E.; Pradeep, T.; Sundararajan, T.; Dasgupta, A.; Dasgupta, N.; Das, S.K.: A micro-convection model for thermal conductivity of nanofluid. Pramana J. Phys. 65, 863–869 (2005)

    Google Scholar 

  • Leong, K.C.; Yang, C.; Murshed, S.M.S.: A model for the thermal conductivity of nanofluids—the effect of interfacial layer. J. Nanopart. Res. 8, 245–254 (2006)

    Google Scholar 

  • Xuan, Y.; Roetzel, W.: Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transf. 43, 3701–3707 (2000)

    Google Scholar 

  • De Vahl Davis, G.: Natural convection of air in a square cavity, a benchmark numerical solution. Int. J. Numer. Methods Fluids 3, 249–264 (1983)

  • Liaqat, A.; Baytas, A.C.: Conjugate natural convection in a square enclosure containing volumetric sources. Int. J. Heat Mass Transf. 44, 3273–3280 (2001)

    Google Scholar 

  • Zhao, F.Y.; Tang, G.F.; Liu, D.: Conjugate natural convection in enclosures with external and internal heat sources. Int. J. Eng. Sci. 44, 148–165 (2006)

    Google Scholar 

  • Altac, Z.; Kurtul, O.: Natural convection in tilted rectangular enclosures with a vertically situated hot plate inside. J. Appl. Therm. Eng. 27, 1832–1840 (2007)

    Google Scholar 

  • Kim, B.S.; Lee, D.S.; Ha, M.Y.; Yoon, H.S.: A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations. Int. J. Heat Mass Transf. 51, 1888–1906 (2007)

    Google Scholar 

  • Mustafizur Rahman, M.D.; Alim, M.A.; Saha, S.; Chowdhury, M.K.: A numerical Study of mixed convection in a square cavity with a heat conducting square cylinder at different locations. J. Mech. Eng. 39, 78–85 (2008)

    Google Scholar 

  • Zhang, X.; Yang, M.: Natural convection heat transfer of a rectangular block within a vertical enclosure. J. Heat Transf. Eng. 30, 466–476 (2009)

    Google Scholar 

  • Zhao, F.; Liu, D.; Tang, G.: Determining boundary heat flux profiles in an enclosure containing solid conducting block. Int. J. Heat Mass Transf. 53, 1269–1282 (2010)

    Google Scholar 

  • Khanafer, K.; Vafai, K.; Lightstone, M.; Buoyancy–driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46, 3639–3653 (2003)

    Google Scholar 

  • Ho, C.J.; Chen, M.W.; Li, Z.W.: Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity. Int. J. Heat Mass Transf. 51, 4506–4516 (2008)

    Google Scholar 

  • Oztop, H.F.; Abu-Nada, E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29, 1326–1336 (2008)

    Google Scholar 

  • Abouali, O.; Falahatpisheh, A.: Numerical investigation of natural convection of Al2O3 nanofluid in vertical annuli. Heat and Mass Transfer. 46, 15–23 (2009)

    Google Scholar 

  • Mahmoudi, A.H.; Shahi, M.; Raouf, A.H.; Ghasemian, A.: Numerical study of natural convection cooling of horizontal heat source mounted in a square cavity filled with nanofluid. Int. Commun. Heat Mass Transf. 37, 1135–1144 (2010)

    Google Scholar 

  • Aminossadati, S.M.; Ghasemi, B.: Natural convection cooling of a localized heat source at the bottom of a nanofluid-filled enclosure. Eur. J. Mech. B Fluids 28, 630–640 (2009)

    Google Scholar 

  • Mahmoudi, A.H.; Shahi, M.; Honarbakhsh Raouf, A.: Modeling of conjugated heat transfer in a thick walled enclosure filled with nanofluid. Int. Commun. Heat Mass Transf. 38, 119–127 (2011)

    Google Scholar 

  • Daungthongsuk, W.; Wongwises, S.: A critical review of convective heat transfer of nanofluids. Renew. Sustain. Energy Rev. 11, 797–817 (2007)

    Google Scholar 

  • Kaka, S.; Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluid. Int. J. Heat Mass Transf. 52, 3187–3196 (2009)

    Google Scholar 

  • Putra, N.; Roetzel, W.; Das, S.K.: Natural convection of nanofluids. Heat Mass Transf. 39, 775–784 (2003)

    Google Scholar 

  • Ho, C.J.; Liu, W.K.; Chang, Y.S.; Lin, C.C.: Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int. J. Thermal Sci. 49, 1345–1353 (2010)

    Google Scholar 

  • Corcione, M.: Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls. Int. J. Thermal Sci. 49, 1536–1546 (2010)

    Google Scholar 

  • Brinkman, H.C.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20, 571 (1952)

    Google Scholar 

  • Einstein A.: Eine neue bestimmung der molekuldimensionen. Annalen der Physik. 19, 289–306 (1906)

    Article  MATH  Google Scholar 

  • Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Taylor and Francis Group, New York (1980)

  • Maïga, S.E.B.; Nguyen, C.T.: Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattices Microstruct. 35, 543–557 (2004)

    Google Scholar 

  • Das S.K., Putra N., Thiesen P., Roetzel W.: Temperature dependence of thermal conductivity enhancement for nanofluids. Trans. ASME J. Heat Transf. 125, 567–574 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Dehghan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alizadeh, M.R., Dehghan, A.A. Conjugate Natural Convection of Nanofluids in an Enclosure with a Volumetric Heat Source. Arab J Sci Eng 39, 1195–1207 (2014). https://doi.org/10.1007/s13369-013-0658-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0658-2

Keywords

Navigation