Skip to main content
Log in

Infection state of Pantoea agglomerans in the rice water weevil Lissorhoptrus oryzophilus (Coleoptera: Curculionidae)

  • Original Research Paper
  • Published:
Applied Entomology and Zoology Aims and scope Submit manuscript

Abstract

Pantoea agglomerans is an important bacterial symbiont of insects. Despite its frequent discovery in various insects, little is known of its strain diversity and quantitative dynamics. In this study, we investigated these aspects of the bacterium in the rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), a serious pest of rice in North America and East Asia. Based on the cloning and sequencing of a bacterial 16S rRNA gene, we identified three novel P. agglomerans strains from different weevil populations, with each population harboring only one strain. In female adults, gut was the dominant tissue harboring P. agglomerans. This bacterium was also present in the ovary, but its density was very low there. The bacterium was maintained at a low density across all immature stages (from egg to pupa); however, the density increased substantially as adults emerged. Its density was low in the overwintering stage, but increased stepwise after the overwintered adults were allowed to feed on host plants, i.e., when they developed from early to actively reproducing stages. The infection density returned to a low level in the adults at a late reproductive stage. In conclusion, each of the L. oryzophilus populations we investigated was probably infected by a single P. agglomerans strain, and the gut of adults is the major tissue/developmental stage to harbor this bacterium, with actively reproducing adults attaining a high level of infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baumann L, Baumann P (1994) Growth-kinetics of the endosymbiont Buchnera aphidicola in the aphid Schizaphis gramizum. Appl Environ Microb 60:3440–3443

    CAS  Google Scholar 

  • Bisi DC, Lampe DJ (2011) Secretion of anti-Plasmodium effector proteins from a natural Pantoea agglomerans isolate by using pelB and hlyA secretion signals. Appl Environ Microb 77:4669–4675

    Article  CAS  Google Scholar 

  • Blackburn MB, Gundersen-Rindal DE, Weber DC, Martin PAW Jr, Farrar RR (2008) Enteric bacteria of field-collected Colorado potato beetle larvae inhibit growth of the entomopathogens Photorhabdus temperata and Beauveria bassiana. Biol Control 46:434–441

    Article  Google Scholar 

  • Bridges JR (1981) Nitrogen-fixing bacteria associated with bark beetles. Microb Ecol 7:131–137

    Article  CAS  PubMed  Google Scholar 

  • Chavshin AR, Oshaghi MA, Vatandoost H, Yakhchali B, Raeisi A, Zarenejad F (2013) Escherichia coli expressing a green fluorescent protein (GFP) in Anopheles stephensi: a preliminary model for paratransgenesis. Symbiosis 60:17–24

    Article  CAS  Google Scholar 

  • Chen H, Chen ZM, Zhou YS (2005) Rice water weevil (Coleoptera: Curculionidae) in mainland China: Invasion, spread and control. Crop Prot 24:695–702

    Article  Google Scholar 

  • Crippen TL, Zheng L, Sheffield CL, Tomberlin JK, Beier RC, Yu Z (2012) Transient gut retention and persistence of Salmonella through metamorphosis in the lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae). J Appl Microb 112:920–926

    Article  CAS  Google Scholar 

  • Delétoile A, Decré D, Courant S, Passet V, Audo J, Grimont P, Arlet G, Brisse S (2009) Phylogeny and identification of Pantoea species and typing of Pantoea agglomerans strains by multilocus gene sequencing. J Clin Microbiol 47:300–310

    Article  PubMed  Google Scholar 

  • Dillon RJ, Charnley AK (1995) Chemical barriers to gut infection in the desert locust-in vivo production of antimicrobial phenols associated with the bacterium Pantoea agglomerans. J Invertebr Pathol 66:72–75

    Article  CAS  Google Scholar 

  • Dillon RJ, Charnley AK (1996) Colonization of the guts of germ-free desert locusts, Schistocerca gregaria, by the bacterium Pantoea agglomerans. J Invertebr Pathol 67:11–14

    Article  Google Scholar 

  • Dillon RJ, Vennard CT, Charnley AK (2002) A note: gut bacteria produce components of a locust cohesion pheromone. J Appl Microbiol 92:759–763

    Article  CAS  PubMed  Google Scholar 

  • Dossi FCA, Da Silva EP, Consoli FL (2014) Population dynamics and growth rates of endosymbionts during Diaphorina citri (Hemiptera, Liviidae) ontogeny. Microb Ecol 68:881–889

    Article  PubMed  Google Scholar 

  • Duan J, Yi T, Lu Z, Shen D, Feng Y (2007) Rice endophyte Pantoea agglomerans YS19 forms multicellular symplasmata via cell aggregation. FEMS Microbiol Lett 270:220–226

    Article  CAS  PubMed  Google Scholar 

  • Fang HW, Zhang BW, Fang XQ, Chen CQ, Li QL, Yao CY, Yu HB (2003) Bionomics of Lissorhoptrus oryzophilus in Tongcheng, Anhui province. Entomol Knowl 40:546–549 (in Chinese with English summary)

    Google Scholar 

  • Fukatsu T, Nikoh N (1998) Two intracellular symbiotic bacteria from the mulberry psyllid Anomoneura mori (Insecta, Homoptera). Appl Environ Microb 64:3599–3606

    CAS  Google Scholar 

  • Gavini F, Mergaert J, Beji A, MielcarekC Izard D, Kersters K, De Ley J (1989) Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. Int J Syst Bacteriol 39:337–345

    Article  Google Scholar 

  • Gravgaard JC, Turnbull MW, McNealy TL (2010) A novel technique for feeding and confirming uptake of bacteria in larvae of the southern house mosquito, Culex quinquefasciatus (Diptera: Culicidae). Fla Entomol 93:577–583

    Article  CAS  Google Scholar 

  • Greenberg B (1959) Persistence of bacteria in the developmental stages of the housefly. III. Quantitative distribution in prepupae and pupae. Am J Trop Med Hyg 8:613–617

    CAS  PubMed  Google Scholar 

  • Gusmão DS, Santos AV, Marini DC Jr, Bacci M, Berbert-Molina MA, Lemos FJA (2010) Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in the midgut. Acta Trop 115:275–281

    Article  PubMed  Google Scholar 

  • Heerman M, Weng J, Hurwitz I, Durvasula R, Ramalho-Ortigao M (2015) Bacterial infection and immune responses in Lutzomyia longipalpis sand fly larvae midgut. PLoS Neglect Trop D 9:e0003923

    Article  Google Scholar 

  • Hosokawa T, Hironaka M, Inadomi K, Mukai H, Nikoh N, Fukatsu T (2013) Diverse strategies for vertical symbiont transmission among subsocial stinkbugs. PLoS One 8:e65081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt J, Charnley AK (1981) Abundance and distribution of the gut flora of the desert locust, Schistocerca gregaria. J Invertebr Pathol 38:378–385

    Article  Google Scholar 

  • Jiang MX, Cheng JA (2003) Effects of starvation and absence of free water on the oviposition of overwintered adult rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae). Int J Pest Manage 49:89–94

    Article  Google Scholar 

  • Jiang CG, Baehrecke EH, Thummel CS (1997) Steroid regulated programmed cell death during Drosophila metamorphosis. Development 124:4673–4683

    CAS  PubMed  Google Scholar 

  • Jiang MX, Zhang WJ, Cheng JA (2004) Termination of reproductive diapause in the rice water weevil with particular reference to the effects of temperature. Appl Entomol Zool 39:683–689

    Article  Google Scholar 

  • Jiang M, Way MO, Yoder R, Zhang W, Cheng J (2006) Elytral color dimorphism in rice water weevil (Coleoptera: Curculionidae): occurrence in spring populations and relationship to female reproductive development. Ann Entomol Soc Am 99:1127–1132

    Article  Google Scholar 

  • Kaltenpoth M, Goettler W, Koehler S, Strohm E (2010) Life cycle and population dynamics of a protective insect symbiont reveal severe bottlenecks during vertical transmission. Evol Ecol 24:463–477

    Article  Google Scholar 

  • Komaki K, Ishikawa H (2000) Genomic copy number of intracellular bacterial symbionts of aphids varies in response to developmental stage and morph of their host. Insect Biochem Mol 30:253–258

    Article  CAS  Google Scholar 

  • Lauzon CR, Sjogren RE, Prokopy RJ (2000) Enzymatic capabilities of bacteria associated with apple maggot flies: a postulated role in attraction. J Chem Ecol 26:953–967

    Article  CAS  Google Scholar 

  • Lauzon CR, Potter SE, Prokopy RJ (2003) Degradation and detoxification of the dihydrochalcone phloridzin by Enterobacter agglomerans, a bacterium associated with the apple pest, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae). Environ Entomol 32:953–962

    Article  CAS  Google Scholar 

  • Lauzon CR, McCombs SD, Potter SE, Peabody NC (2009) Establishment and vertical passage of Enterobacter (Pantoea) agglomerans and Klebsiella pneumoniae through all life stages of the Mediterranean fruit fly (Diptera: Tephritidae). Ann Entomol Soc Am 102:85–95

    Article  Google Scholar 

  • Loncaric I, Heigl H, Licek E, Moosbeckhofer R, Busse H, Rosengarten R (2009) Typing of Pantoea agglomerans isolated from colonies of honey bees (Apis mellifera) and culturability of selected strains from honey. Apidologie 40:40–54

    Article  CAS  Google Scholar 

  • Lu F, Kang X, Jiang C, Lou B, Jiang M, Way MO (2013a) Isolation and characterization of bacteria from midgut of the rice water weevil (Coleoptera: Curculionidae). Environ Entomol 42:874–881

    Article  CAS  PubMed  Google Scholar 

  • Lu F, Zhang WJ, Jiang MX, Way MO (2013b) Southern cutgrass, Leersia hexandra Swartz, allows rice water weevils to avoid summer diapause. Southwest Entomol 38:153–162

    Article  Google Scholar 

  • Lu F, Kang X, Lorenz G, Espino L, Jiang M, Way MO (2014) Culture-Independent analysis of bacterial communities in the gut of rice water weevil (Coleoptera: Curculionidae). Ann Entomol Soc Am 107:592–600

    Article  CAS  Google Scholar 

  • Moll RM, Romoser WS, Modrzakowski MC, Moncayo AC, Lerdthusnee K (2001) Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. J Med Entomol 38:29–32

    Article  CAS  PubMed  Google Scholar 

  • Moro CV, Tran FH, Raharimalala FN, Ravelonandro P, Mavingui P (2013) Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus. BMC Microbiol 13:70

    Article  CAS  Google Scholar 

  • Nadarasah G, Stavrinides J (2014) Quantitative evaluation of the host-colonizing capabilities of the enteric bacterium Pantoea using plant and insect hosts. Microbiology 160:602–615

    Article  CAS  PubMed  Google Scholar 

  • Nishikori K, Morioka K, Kubo T, Morioka M (2009) Age- and morph-dependent activation of the lysosomal system and Buchnera degradation in aphid endosymbiosis. J Insect Physiol 55:351–357

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma M, Noda S, Usami R, Horikoshi K, Kudo T (1996) Diversity of nitrogen fixation genes in the symbiotic intestinal microflora of the termite Reticulitermes speratus. Appl Environ Microb 62:2747–2752

    CAS  Google Scholar 

  • Potrikus CJ, Breznak JA (1977) Nitrogen-fixing Enterobacter agglomerans isolated from guts of wood-eating termites. Appl Environ Microb 33:392–399

    CAS  Google Scholar 

  • Radvan R (1960) Persistence of bacteria during development in flies. III. Localization of the bacteria and transmission after emergence of the fly. Folia Microbiol 5:149–156

    Article  Google Scholar 

  • Rochon K, Lysyk TJ, Selinger LB (2005) Retention of Escherichia coli by house fly and stable fly (Diptera: Muscidae) during pupal metamorphosis and eclosion. J Med Entomol 42:397–403

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Hirai K, Way MO (2005) The rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae). Appl Entomol Zool 40:31–39

    Article  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microb 71:1501–1506

    Article  CAS  Google Scholar 

  • Shi W, Syrenne R, Sun J, Yuan JS (2010) Molecular approaches to study the insect gut symbiotic microbiota at the ‘omics’ age. Insect Sci 17:199–219

    Article  CAS  Google Scholar 

  • Stoll S, Gadau J, Gross R, Feldhaar H (2007) Bacterial microbiota associated with ants of the genus Tetraponera. Biol J Linn Soc 90:399–412

    Article  Google Scholar 

  • Straif SC, Mbogo C, Toure AM, Walker ED, Kaufman M, Toure YT, Beier JC (1998) Midgut bacteria in Anopheles gambiae and An. funestus (Diptera: Culicidae) from Kenya and Mali. J Med Entomol 35:222–226

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vorwerk S, Martinez-Torres D, Forneck A (2007) Pantoea agglomerans-associated bacteria in grape phylloxera (Daktulosphaira vitifoliae, Fitch). Agric For Entomol 9:57–64

    Article  Google Scholar 

  • Waku Y, Endo Y (1987) Ultrastructure and life cycle of the symbionts in a homopteran insect, Anomoneura mori Schwartz (Psyllidae). Appl Entomol Zool 22:630–637

    Google Scholar 

  • Wolschin F, Holldobler B, Gross R, Zientz E (2004) Replication of the endosymbiotic bacterium Blochmannia floridanus is correlated with the developmental and reproductive stages of its ant host. Appl Environ Microb 70:4096–4102

    Article  CAS  Google Scholar 

  • Wright ES, Yilmaz LS, Noguera DR (2012) Decipher, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microb 78:717–725

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (Grant Number 31372001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxing Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Huang, Y., Huang, X. et al. Infection state of Pantoea agglomerans in the rice water weevil Lissorhoptrus oryzophilus (Coleoptera: Curculionidae). Appl Entomol Zool 51, 561–569 (2016). https://doi.org/10.1007/s13355-016-0433-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13355-016-0433-4

Keywords

Navigation