Skip to main content
Log in

Ti3C2 (MXene), an advanced carrier system: role in photothermal, photoacoustic, enhanced drugs delivery and biological activity in cancer therapy

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

In the realm of healthcare and the advancing field of medical sciences, the development of efficient drug delivery systems become an immense promise to cure several diseases. Despite considerable advancements in drug delivery systems, numerous challenges persist, necessitating further enhancements to optimize patient outcomes. Smart nano-carriers, for instance, 2D sheets nano-carriers are the recently emerging nanosheets that may garner attention for targeted delivery of bioactive compounds, drugs, and genes to kill cancer cells. Within these advancements, Ti3C2TX-MXene, characterized as a two-dimensional transition metal carbide, has surfaced as a prominent intelligent nanocarrier within nanomedicine. Its noteworthy characteristics facilitated it as an ideal nanocarrier for cancer therapy. In recent advancements in drug delivery research, Ti3C2TX-MXene 2D nanocarriers have been designed to release drugs in response to specific stimuli, guided by distinct physicochemical  parameters. This review emphasized the multifaceted role of Ti3C2TX-MXene as a potential carrier for delivering poorly hydrophilic drugs to cancer cells, facilitated by various polymer coatings. Furthermore, beyond drug delivery, this smart nanocarrier demonstrates utility in photoacoustic imaging and photothermal therapy, further highlighting its significant role in cellular mechanisms.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

 No data was used for the research described in the article.

Abbreviations

Ti3C2 :

Titanium Carbide

VEGFR:

Vascular endothelial growth factor receptor

mAb:

Monoclonal antibody

PD1:

Programmed cell death receptor-1

IV:

Intravenous

SC:

Subcutaneous

GI:

Gastrointestinal tract

F:

Fluorine

O:

Oxygen

OH:

Hydroxyl

Ti3AlC2 :

Titanium aluminum carbide

UV:

Ultraviolet

Nm:

Nanometer

NIR:

Near-infrared

PEG:

Polyethylene glycol

PVP:

Polyvinylpyrrolidone

Nb2C:

Niobium Carbide

Pt:

Platinum

DOX:

Doxorubicin

HeLa:

Henrietta Lacks

CT:

Computed tomography

MRI:

Magnetic Resonance Imaging

EPR:

Enhanced permeability and retention

PA:

Photoacoustic

ICP-OES:

Inductively coupled plasma optical emission spectrometry

pH:

Potential of Hydrogen

ROS:

Reactive oxygen species

O2– :

Superoxide anion

H2O2 :

Hydrogen peroxide

IR:

Ionizing radiation

SOD:

Superoxide dismutase

MDA:

Malondialdehyde

IL:

Ionic liquids

IL-1β:

Interleukin-1 beta

IL-6:

Interleukin 6

TNF-α:

Tumour Necrosis Factor alpha

HepG2:

Hepatoblastoma cell line

CD44:

Cluster of Differentiation 44

NPD:

Nb2C plasmon (MXene), Pt nanozymes, doxorubicin

DLS:

Dynamic light scattering

PBS:

Phosphate buffered saline

DMEM:

Dulbecco’s Modified Eagle Medium

CD:

Carbon dots

SP:

Soybean phospholipid

HA:

Hyaluronic acid

MOF:

Metal-organic frameworks

CRISPR:

Clustered regularly interspaced short palindromic repeats

PDA:

Polydopamine

JC-1:

Tetraethylbenzimi-dazoylcarbocyanine iodide

EGCG:

Epigallocatechin gallate

TPOM:

Ti3C2-PEG-OVA-Mn2+

DC:

Dendritic cell

PTT:

Photothermal therapy

Mn2+ :

Manganese (2+)

STING:

Stimulator of interferon genes

DNA:

Deoxyribonucleic acid

CD80:

Cluster of Differentiation 80

CD86:

Cluster of Differentiation 86

CD11c:

Cluster of Differentiation 11c

MHC-II:

Major histocompatibility complex class II

IFN-β:

Interferon-β

NF-κB:

Nuclear factor kappa B

WNT:

Wingless-related integration site

HIF-1α:

Hypoxia-inducible factor 1-alpha

PCR:

Polymerase chain reaction

ATM:

Ataxia-Telangiectasia mutated

CHK2:

Checkpoint kinase 2

CDK4:

Cyclin-Dependent Kinase 4

Na+ :

Sodium (1+)

K+ :

Potassium (1+)

ATPase:

Adenosine triphosphatase

BMP2:

Bone Morphogenetic Protein 2

References

  1. Akens MK, Hardisty MR, Wilson BC, Schwock J, Whyne CM, Burch S, et al. Defining the therapeutic window of vertebral photodynamic therapy in a murine pre-clinical model of breast cancer metastasis using the photosensitizer BPD-MA (Verteporfin). Breast Cancer Res Treat. 2010;119:325–33.

    Article  CAS  PubMed  Google Scholar 

  2. Watanabe K, Kuramitsu S, Posey AD, June CH. Expanding the therapeutic window for CAR T cell therapy in solid tumors: the knowns and unknowns of CAR T Cell Biology. Front Immunol. 2018;9:9.

    Article  Google Scholar 

  3. Stein F, Schielke A, Barcikowski S, Rehbock C. Influence of gold/silver ratio in ablative nanoparticles on their interaction with aptamers and functionality of the obtained conjugates. Bioconjug Chem. 2021;32:2439–46.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang W, Taheri-Ledari R, Hajizadeh Z, Zolfaghari E, Ahghari MR, Maleki A, et al. Enhanced activity of vancomycin by encapsulation in hybrid magnetic nanoparticles conjugated to a cell-penetrating peptide. Nanoscale. 2020;12:3855–70.

    Article  CAS  PubMed  Google Scholar 

  5. Guilbaud-Chéreau C, Dinesh B, Schurhammer R, Collin D, Bianco A, Ménard-Moyon C. Protected amino acid–based hydrogels incorporating carbon nanomaterials for near-infrared irradiation-triggered drug release. ACS Appl Mater Interfaces. 2019;11:13147–57.

    Article  PubMed  Google Scholar 

  6. Saha A, Basiruddin S, Maity AR, Jana NR. Synthesis of nanobioconjugates with a controlled average number of biomolecules between 1 and 100 per nanoparticle and observation of multivalency dependent interaction with proteins and cells. Langmuir. 2013;29:13917–24.

    Article  CAS  PubMed  Google Scholar 

  7. Tang W, Dong Z, Zhang R, Yi X, Yang K, Jin M, et al. Multifunctional two-dimensional core–shell MXene@gold nanocomposites for enhanced photo–radio combined therapy in the second biological window. ACS Nano. 2019;13:284–94.

    Article  CAS  PubMed  Google Scholar 

  8. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  9. Lorscheider M, Gaudin A, Nakhlé J, Veiman K-L, Richard J, Chassaing C. Challenges and opportunities in the delivery of cancer therapeutics: update on recent progress. Ther Deliv. 2021;12:55–76.

    Article  CAS  PubMed  Google Scholar 

  10. Trojan J. Cabozantinib for the treatment of advanced hepatocellular carcinoma: current data and future perspectives. Drugs. 2020;80:1203–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Duke ES, Barone AK, Chatterjee S, Mishra-Kalyani PS, Shen Y-L, Isikwei E, et al. FDA approval summary: cabozantinib for differentiated thyroid cancer. Clin Cancer Res. 2022;28:4173–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koppolu V, Rekha Vasigala VK. Checkpoint immunotherapy by nivolumab for treatment of metastatic melanoma. J Cancer Res Ther. 2018;14:1167–75.

    Article  CAS  PubMed  Google Scholar 

  13. Jácome AA, Eng C. Role of immune checkpoint inhibitors in the treatment of colorectal cancer: focus on nivolumab. Expert Opin Biol Ther. 2019;19:1247–63.

    Article  PubMed  Google Scholar 

  14. Subklewe M, von Bergwelt-Baildon M, Humpe A. Chimeric antigen receptor T cells: a race to revolutionize cancer therapy. Transfus Med Hemotherapy. 2019;46:15–24.

    Article  Google Scholar 

  15. Lewis AL, Richard J. Challenges in the delivery of peptide drugs: an industry perspective. Ther Deliv. 2015;6:149–63.

    Article  CAS  PubMed  Google Scholar 

  16. Richard J. Challenges in oral peptide delivery: lessons learnt from the clinic and future prospects. Ther Deliv. 2017;8:663–84.

    Article  CAS  PubMed  Google Scholar 

  17. Collins DS, Kourtis LC, Thyagarajapuram NR, Sirkar R, Kapur S, Harrison MW, et al. Optimizing the bioavailability of subcutaneously administered biotherapeutics through mechanochemical drivers. Pharm Res. 2017;34:2000–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Richter WF, Jacobsen B. Subcutaneous absorption of biotherapeutics: knowns and unknowns. Drug Metab Dispos. 2014;42:1881–9.

    Article  PubMed  Google Scholar 

  19. Kinnunen HM, Sharma V, Contreras-Rojas LR, Yu Y, Alleman C, Sreedhara A, et al. A novel in vitro method to model the fate of subcutaneously administered biopharmaceuticals and associated formulation components. J Controlled Release. 2015;214:94–102.

    Article  CAS  Google Scholar 

  20. Mathaes R, Koulov A, Joerg S, Mahler H-C. Subcutaneous injection volume of biopharmaceuticals—pushing the boundaries. J Pharm Sci. 2016;105:2255–9.

    Article  CAS  PubMed  Google Scholar 

  21. Dias C, Abosaleem B, Crispino C, Gao B, Shaywitz A. Tolerability of high-volume subcutaneous injections of a viscous placebo buffer: a randomized, crossover study in healthy subjects. AAPS PharmSciTech. 2015;16:1101–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, et al. Guidelines for synthesis and processing of two-dimensional titanium Carbide (Ti3C2Tx MXene). Chem Mater. 2017;29:7633–44.

    Article  CAS  Google Scholar 

  23. Anasori B, Xie Y, Beidaghi M, Lu J, Hosler BC, Hultman L, et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano. 2015;9:9507–16.

    Article  CAS  PubMed  Google Scholar 

  24. Kim H, Alshareef HN. MXetronics: MXene-enabled electronic and photonic devices. ACS Mater Lett. 2020;2:55–70.

    Article  CAS  Google Scholar 

  25. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23:4248–53.

    Article  CAS  PubMed  Google Scholar 

  26. Xie Z, Chen S, Duo Y, Zhu Y, Fan T, Zou Q, et al. Biocompatible two-dimensional titanium nanosheets for multimodal imaging-guided cancer theranostics. ACS Appl Mater Interfaces. 2019;11:22129–40.

    Article  CAS  PubMed  Google Scholar 

  27. Feng X-Y, Ding B-Y, Liang W-Y, Zhang F, Ning T-Y, Liu J, et al. MXene Ti3C2Tx absorber for a 1.06 µm passively Q-switched ceramic laser. Laser Phys Lett. 2018;15:085805.

    Article  Google Scholar 

  28. Wang C, Wang Y, Jiang X, Xu J, Huang W, Zhang F, et al. MXene Ti3C2Tx: a promising photothermal conversion material and application in all-optical modulation and all-optical information loading. Adv Opt Mater. 2019;7:1900060.

    Article  Google Scholar 

  29. Wu Q, Chen S, Wang Y, Wu L, Jiang X, Zhang F, et al. MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, 0, or OH) deposited microfiber. Adv Mater Technol. 2019;4:1800532.

    Article  Google Scholar 

  30. Zhan X, Si C, Zhou J, Sun Z. MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 2020;5:235–58.

    Article  CAS  Google Scholar 

  31. Iravani S, Varma RS. MXenes and MXene-based materials for tissue engineering and regenerative medicine: recent advances. Mater Adv. 2021;2:2906–17.

    Article  CAS  Google Scholar 

  32. Jastrzębska A, Karwowska E, Basiak D, Zawada A, Ziemkowska W, Wojciechowski T, et al. Biological activity and bio-sorption properties of the Ti2C studied by means of zeta potential and SEM. Int J Electrochem Sci. 2017;12:2159–72.

    Article  Google Scholar 

  33. Szuplewska A, Kulpińska D, Dybko A, Chudy M, Jastrzębska AM, Olszyna A, et al. Future applications of MXenes in biotechnology, nanomedicine, and sensors. Trends Biotechnol. 2020;38:264–79.

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Feng W, Chen Y. Chemistry of two-dimensional MXene nanosheets in theranostic nanomedicine. Chin Chem Lett. 2020;31:937–46.

    Article  CAS  Google Scholar 

  35. Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, et al. Two-dimensional transition metal carbides. ACS Nano. 2012;6:1322–31.

    Article  CAS  PubMed  Google Scholar 

  36. Ronchi RM, Arantes JT, Santos SF. Synthesis, structure, properties and applications of MXenes: current status and perspectives. Ceram Int. 2019;45:18167–88.

    Article  CAS  Google Scholar 

  37. Rasool K, Helal M, Ali A, Ren CE, Gogotsi Y, Mahmoud KA. Antibacterial activity of Ti3C2Tx MXene. ACS Nano. 2016;10:3674–84.

    Article  CAS  PubMed  Google Scholar 

  38. Chen K, Qiu N, Deng Q, Kang M-H, Yang H, Baek J-U, et al. Cytocompatibility of Ti3AlC2, Ti3SiC2, and Ti2AlN: in vitroTests and first-principles calculations. ACS Biomater Sci Eng. 2017;3:2293–301.

    Article  CAS  PubMed  Google Scholar 

  39. Huang J, Li Z, Mao Y, Li Z. Progress and biomedical applications of MXenes. Nano Select. 2021;2:1480–508.

    Article  CAS  Google Scholar 

  40. Chaudhuri K, Wang Z, Alhabeb M, Maleski K, Gogotsi Y, Shalaev V, et al. Optical properties of MXenes. 2D metal carbides and nitrides (MXenes). Cham: Springer International Publishing; 2019. p. 327–46.

    Book  Google Scholar 

  41. Berdiyorov GR. Optical properties of functionalized Ti3C2T2 (T = F, O, OH) MXene: first-principles calculations. AIP Adv. 2016;6:055105.

    Article  Google Scholar 

  42. Li J, Qin R, Yan L, Chi Z, Yu Z, Li N, et al. Plasmonic light illumination creates a channel to achieve fast degradation of Ti3C2Tx nanosheets. Inorg Chem. 2019;58:7285–94.

    Article  CAS  PubMed  Google Scholar 

  43. Fu B, Sun J, Wang C, Shang C, Xu L, Li J, et al. MXenes: synthesis, optical properties, and applications in ultrafast photonics. Small. 2021;17:2006054.

    Article  CAS  Google Scholar 

  44. Li R, Zhang L, Shi L, Wang P. MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano. 2017;11:3752–9.

    Article  CAS  PubMed  Google Scholar 

  45. Wu F, Zheng H, Wang W, Wu Q, Zhang Q, Guo J, et al. Rapid eradication of antibiotic-resistant bacteria and biofilms by MXene and near-infrared light through photothermal ablation. Sci China Mater. 2021;64:748–58.

    Article  CAS  Google Scholar 

  46. Szuplewska A, Kulpińska D, Dybko A, Jastrzębska AM, Wojciechowski T, Rozmysłowska A, et al. 2D Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapy. Mater Sci Engineering: C. 2019;98:874–86.

    Article  CAS  Google Scholar 

  47. Xu Y, Wang Y, An J, Sedgwick AC, Li M, Xie J, et al. 2D-ultrathin MXene/DOXjade platform for iron chelation chemo-photothermal therapy. Bioact Mater. 2022;14:76–85.

    CAS  PubMed  Google Scholar 

  48. Hao Z, Li Y, Liu X, Jiang T, He Y, Zhang X, et al. Enhancing biocatalysis of a MXene-based biomimetic plasmonic assembly for targeted cancer treatments in NIR-II biowindow. Chem Eng J. 2021;425: 130639.

    Article  CAS  Google Scholar 

  49. Li G, Zhong X, Wang X, Gong F, Lei H, Zhou Y, et al. Titanium carbide nanosheets with defect structure for photothermal-enhanced sonodynamic therapy. Bioact Mater. 2022;8:409–19.

    PubMed  Google Scholar 

  50. Bai Z, Zhao L, Feng H, Xin Z, Wang C, Liu Z, et al. Aptamer modified Ti3C2 nanosheets application in smart targeted photothermal therapy for cancer. Cancer Nanotechnol. 2023;14:35.

    Article  CAS  Google Scholar 

  51. Lin Y, Xu S, Zhao X, Chang L, Hu Y, Chen Z, et al. Preparation of NIR-sensitive, photothermal and photodynamic multi-functional mxene nanosheets for laryngeal cancer therapy by regulating mitochondrial apoptosis. Mater Des. 2022;220: 110887.

    Article  CAS  Google Scholar 

  52. Liu Y, Han Q, Yang W, Gan X, Yang Y, Xie K, et al. Two-dimensional MXene/cobalt nanowire heterojunction for controlled drug delivery and chemo-photothermal therapy. Mater Sci Engineering: C. 2020;116: 111212.

    Article  CAS  Google Scholar 

  53. Liu K, Liao Y, Zhou Z, Zhang L, Jiang Y, Lu H, et al. Photothermal-triggered immunogenic nanotherapeutics for optimizing osteosarcoma therapy by synergizing innate and adaptive immunity. Biomaterials. 2022;282: 121383.

    Article  CAS  PubMed  Google Scholar 

  54. Han X, Huang J, Lin H, Wang Z, Li P, Chen Y. 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of Cancer. Adv Healthc Mater. 2018;7:1701394.

    Article  Google Scholar 

  55. Lu B, Hu S, Wu D, Wu C, Zhu Z, Hu L, et al. Ionic liquid exfoliated Ti3C2Tx MXene nanosheets for photoacoustic imaging and synergistic photothermal/chemotherapy of cancer. J Mater Chem B. 2022;10:1226–35.

    Article  CAS  PubMed  Google Scholar 

  56. Jastrzębska AM, Szuplewska A, Wojciechowski T, Chudy M, Ziemkowska W, Chlubny L, et al. In vitro studies on cytotoxicity of delaminated Ti3C2 MXene. J Hazard Mater. 2017;339:1–8.

    Article  PubMed  Google Scholar 

  57. Wang J, Zhang Y, Jin N, Mao C, Yang M. Protein-induced gold nanoparticle assembly for improving the photothermal effect in cancer therapy. ACS Appl Mater Interfaces. 2019;11:11136–43.

    Article  CAS  PubMed  Google Scholar 

  58. Zhou M, Zhou Y, Cheng Y, Wu Y, Yang J, Lv Z. Application of gold-based nanomaterials in tumor photothermal therapy and chemotherapy. J Biomed Nanotechnol. 2020;16:739–62.

    Article  CAS  PubMed  Google Scholar 

  59. Ivošev V, Sánchez GJ, Stefancikova L, Haidar DA, González Vargas CR, Yang X, et al. Uptake and excretion dynamics of gold nanoparticles in cancer cells and fibroblasts. Nanotechnology. 2020;31:135102.

    Article  PubMed  Google Scholar 

  60. Ding L, Chang Y, Yang P, Gao W, Sun M, Bie Y, et al. Facile synthesis of biocompatible L-cysteine-modified MoS2 nanospheres with high photothermal conversion efficiency for photothermal therapy of tumor. Mater Sci Engineering: C. 2020;117: 111371.

    Article  CAS  Google Scholar 

  61. Hao J, Song G, Liu T, Yi X, Yang K, Cheng L, et al. In Vivo long-term biodistribution, excretion, and toxicology of PEGylated transition-metal dichalcogenides MS2 (M = Mo, W, Ti) nanosheets. Adv Sci. 2017;4:1600160.

    Article  Google Scholar 

  62. Sui B, Liu X, Sun J. Biodistribution, inter-/intra-cellular localization and respiratory dysfunction induced by Ti3C2 nanosheets: involvement of surfactant protein down-regulation in alveolar epithelial cells. J Hazard Mater. 2021;402: 123562.

    Article  CAS  PubMed  Google Scholar 

  63. Gao W, Xu K, Ji L, Tang B. Effect of gold nanoparticles on glutathione depletion-induced hydrogen peroxide generation and apoptosis in HL7702 cells. Toxicol Lett. 2011;205:86–95.

    Article  CAS  PubMed  Google Scholar 

  64. Zong L, Wu H, Lin H, Chen Y. A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. Nano Res. 2018;11:4149–68.

    Article  CAS  Google Scholar 

  65. Lin H, Wang X, Yu L, Chen Y, Shi J. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 2017;17:384–91.

    Article  CAS  PubMed  Google Scholar 

  66. Mei X, Hu T, Wang Y, Weng X, Liang R, Wei M. Recent advancements in two-dimensional nanomaterials for drug delivery. WIREs Nanomed Nanobiotechnol. 2020;12:e1596.

    Article  Google Scholar 

  67. Ren X, Huo M, Wang M, Lin H, Zhang X, Yin J, et al. Highly catalytic niobium carbide (MXene) promotes hematopoietic recovery after radiation by free radical scavenging. ACS Nano. 2019;13:6438–54.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang J, Li S, Hu S, Zhou Y. Chemical Stability of Ti3C2 MXene with Al in the temperature range 500–700°C. Materials. 2018;11: 1979.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tian W, VahidMohammadi A, Wang Z, Ouyang L, Beidaghi M, Hamedi MM. Layer-by-layer self-assembly of pillared two-dimensional multilayers. Nat Commun. 2019;10:2558.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhang D-Y, Xu H, He T, Younis MR, Zeng L, Liu H, et al. Cobalt carbide-based theranostic agents for in vivo multimodal imaging guided photothermal therapy. Nanoscale. 2020;12:7174–9.

    Article  CAS  PubMed  Google Scholar 

  71. Shurbaji S, Manaph NPA, Ltaief SM, Al-Shammari AR, Elzatahry A, Yalcin HC. Characterization of MXene as a cancer photothermal agent under physiological conditions. Front Nanatechnol. 2021;3:689718.

    Article  Google Scholar 

  72. Yang J, Bao W, Jaumaux P, Zhang S, Wang C, Wang G. MXene-based composites: synthesis and applications in rechargeable batteries and supercapacitors. Adv Mater Interfaces. 2019;6:1802004.

    Article  Google Scholar 

  73. Salim O, Mahmoud KA, Pant KK, Joshi RK. Introduction to MXenes: synthesis and characteristics. Mater Today Chem. 2019;14:100191.

    Article  CAS  Google Scholar 

  74. Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017;2:16098.

    Article  CAS  Google Scholar 

  75. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater. 2014;26:992–1005.

    Article  CAS  PubMed  Google Scholar 

  76. Sang X, Xie Y, Lin M-W, Alhabeb M, Van Aken KL, Gogotsi Y, et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano. 2016;10:9193–200.

    Article  CAS  PubMed  Google Scholar 

  77. Ghidiu M, Lukatskaya MR, Zhao M-Q, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature. 2014;516:78–81.

    Article  CAS  PubMed  Google Scholar 

  78. Feng A, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, et al. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater Des. 2017;114:161–6.

    Article  CAS  Google Scholar 

  79. Halim J, Lukatskaya MR, Cook KM, Lu J, Smith CR, Näslund L-Å, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem Mater. 2014;26:2374–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lipatov A, Alhabeb M, Lukatskaya MR, Boson A, Gogotsi Y, Sinitskii A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv Electron Mater. 2016;2:1600255.

    Article  Google Scholar 

  81. Naguib M, Unocic RR, Armstrong BL, Nanda J. Large-scale delamination of multi-layers transition metal carbides and carbonitrides MXenes. Dalton Trans. 2015;44:9353–8.

    Article  CAS  PubMed  Google Scholar 

  82. Mashtalir O, Naguib M, Mochalin VN, Dall’Agnese Y, Heon M, Barsoum MW, et al. Intercalation and delamination of layered carbides and carbonitrides. Nat Commun. 2013;4:1716.

    Article  PubMed  Google Scholar 

  83. Ma R, Sasaki T. Two-dimensional oxide and hydroxide nanosheets: controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Acc Chem Res. 2015;48:136–43.

    Article  CAS  PubMed  Google Scholar 

  84. Bitounis D, Ali-Boucetta H, Hong BH, Min D, Kostarelos K. Prospects and challenges of graphene in biomedical applications. Adv Mater. 2013;25:2258–68.

    Article  CAS  PubMed  Google Scholar 

  85. Yin F, Gu B, Lin Y, Panwar N, Tjin SC, Qu J, et al. Functionalized 2D nanomaterials for gene delivery applications. Coord Chem Rev. 2017;347:77–97.

    Article  CAS  Google Scholar 

  86. Yin T, Liu J, Zhao Z, Zhao Y, Dong L, Yang M, et al. Redox Sensitive Hyaluronic acid-decorated graphene oxide for photothermally controlled tumor-cytoplasm-selective rapid drug delivery. Adv Funct Mater. 2017;27:1604620.

    Article  Google Scholar 

  87. Zhu C, Du D, Lin Y. Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications. Biosens Bioelectron. 2017;89:43–55.

    Article  CAS  PubMed  Google Scholar 

  88. Choi CA, Lee JE, Mazrad ZAI, In I, Jeong JH, Park SY. Redox- and pH-responsive fluorescent carbon nanoparticles-MnO2-based FRET system for tumor-targeted drug delivery in vivo and in vitro. J Ind Eng Chem. 2018;63:208–19.

    Article  CAS  Google Scholar 

  89. Huang G, Zhang K-L, Chen S, Li S-H, Wang L-L, Wang L-P, et al. Manganese-iron layered double hydroxide: a theranostic nanoplatform with pH-responsive MRI contrast enhancement and drug release. J Mater Chem B. 2017;5:3629–33.

    Article  CAS  PubMed  Google Scholar 

  90. Kalantar-zadeh K, Ou JZ, Daeneke T, Mitchell A, Sasaki T, Fuhrer MS. Two dimensional and layered transition metal oxides. Appl Mater Today. 2016;5:73–89.

    Article  Google Scholar 

  91. Li Z, Wong SL. Functionalization of 2D transition metal dichalcogenides for biomedical applications. Mater Sci Engineering: C. 2017;70:1095–106.

    Article  CAS  Google Scholar 

  92. Yang D, Feng L, Dougherty CA, Luker KE, Chen D, Cauble MA, et al. In vivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide. Biomaterials. 2016;104:361–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Alibolandi M, Mohammadi M, Taghdisi SM, Ramezani M, Abnous K. Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery. Carbohydr Polym. 2017;155:218–29.

    Article  CAS  PubMed  Google Scholar 

  94. Oh J-M, Choi S-J, Kim S-T, Choy J-H. Cellular Uptake mechanism of an inorganic nanovehicle and its drug conjugates: enhanced efficacy due to clathrin-mediated endocytosis. Bioconjug Chem. 2006;17:1411–7.

    Article  CAS  PubMed  Google Scholar 

  95. Tang L, Xie X, Li C, Xu Y, Zhu W, Wang L. Regulation of structure and anion-exchange performance of layered double hydroxide: function of the metal cation composition of a Brucite-like Layer. Materials. 2022;15: 7983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Peng L, Mei X, He J, Xu J, Zhang W, Liang R, et al. Monolayer nanosheets with an extremely high drug loading toward controlled delivery and cancer theranostics. Adv Mater. 2018;30:1707389.

    Article  Google Scholar 

  97. Zhu X, Ji X, Kong N, Chen Y, Mahmoudi M, Xu X, et al. Intracellular mechanistic understanding of 2D MoS2 nanosheets for anti-exocytosis-enhanced synergistic cancer therapy. ACS Nano. 2018;12:2922–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hashemi H, Namazi H. Understanding the pH dependent fluorescence and doxorubicin release from graphene oxide functionalized citric acid dendrimer as a highly efficient drug delivery system. Mater Today Commun. 2021;28: 102593.

    Article  CAS  Google Scholar 

  99. Boddu A, Obireddy SR, Zhang D, Rao KSVK, Lai W-F. ROS-generating, pH-responsive and highly tunable reduced graphene oxide-embedded microbeads showing intrinsic anticancer properties and multi-drug co-delivery capacity for combination cancer therapy. Drug Deliv. 2022;29:2481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mohammadzadeh V, Norouzi A, Ghorbani M. Multifunctional nanocomposite based on lactose@layered double hydroxide-hydroxyapatite as a pH-sensitive system for targeted delivery of doxorubicin to liver cancer cells. Colloids Surf Physicochem Eng Asp. 2022;651: 129723.

    Article  CAS  Google Scholar 

  101. Xu S, Zhong Y, Nie C, Pan Y, Adeli M, Haag R. Co-delivery of doxorubicin and chloroquine by polyglycerol functionalized MoS2 nanosheets for efficient multidrug-resistant cancer therapy. Macromol Biosci. 2021;21:2100233.

    Article  CAS  Google Scholar 

  102. Li R, Wang Y, Du J, Wang X, Duan A, Gao R, et al. Graphene oxide loaded with tumor-targeted peptide and anti-cancer drugs for cancer target therapy. Sci Rep. 2021;11:1725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. He S, Li J, Chen M, Deng L, Yang Y, Zeng Z, et al. Graphene oxide-template gold nanosheets as highly efficient near-infrared hyperthermia agents for cancer therapy. Int J Nanomed. 2020;15:8451–63.

    Article  CAS  Google Scholar 

  104. Liu W, Zhang X, Zhou L, Shang L, Su Z. Reduced graphene oxide (rGO) hybridized hydrogel as a near-infrared (NIR)/pH dual-responsive platform for combined chemo-photothermal therapy. J Colloid Interface Sci. 2019;536:160–70.

    Article  CAS  PubMed  Google Scholar 

  105. Zhang X, Wu J, Williams GR, Niu S, Qian Q, Zhu L-M. Functionalized MoS2-nanosheets for targeted drug delivery and chemo-photothermal therapy. Colloids Surf B Biointerfaces. 2019;173:101–8.

    Article  CAS  PubMed  Google Scholar 

  106. Tahini HA, Tan X, Smith SC. The origin of low workfunctions in OH terminated MXenes. Nanoscale. 2017;9:7016–20.

    Article  CAS  PubMed  Google Scholar 

  107. Khazaei M, Arai M, Sasaki T, Ranjbar A, Liang Y, Yunoki S. OH-terminated two-dimensional transition metal carbides and nitrides as ultralow work function materials. Phys Rev B. 2015;92: 075411.

    Article  Google Scholar 

  108. Xing C, Chen S, Liang X, Liu Q, Qu M, Zou Q, et al. Two-dimensional MXene (Ti3C2)-integrated cellulose hydrogels: toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy anticancer activity. ACS Appl Mater Interfaces. 2018;10:27631–43.

    Article  CAS  PubMed  Google Scholar 

  109. Wen H, Liu P, Jiang Z, Peng H, Liu H. Redox-responsive MXene-SS-PEG nanomaterials for delivery of doxorubicin. Inorg Chem Commun. 2023;147: 110227.

    Article  CAS  Google Scholar 

  110. Geng B, Xu S, Shen L, Fang F, Shi W, Pan D. Multifunctional carbon dot/MXene heterojunctions for alleviation of tumor hypoxia and enhanced sonodynamic therapy. Carbon N Y. 2021;179:493–504.

    Article  CAS  Google Scholar 

  111. Seitak A, Shanti A, Al Adem K, Farid N, Luo S, Iskandarov J, et al. 2D MXenes for controlled releases of therapeutic proteins. J Biomed Mater Res A. 2023;111:514–26.

    Article  CAS  PubMed  Google Scholar 

  112. Liu G, Zou J, Tang Q, Yang X, Zhang Y, Zhang Q, et al. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl Mater Interfaces. 2017;9:40077–86.

    Article  CAS  PubMed  Google Scholar 

  113. Rabiee N, Bagherzadeh M, Jouyandeh M, Zarrintaj P, Saeb MR, Mozafari M, et al. Natural polymers decorated MOF-MXene nanocarriers for co-delivery of doxorubicin/pCRISPR. ACS Appl Bio Mater. 2021;4:5106–21.

    Article  CAS  PubMed  Google Scholar 

  114. Wu Z, Shi J, Song P, Li J, Cao S. Chitosan/hyaluronic acid based hollow microcapsules equipped with MXene/gold nanorods for synergistically enhanced near infrared responsive drug delivery. Int J Biol Macromol. 2021;183:870–9.

    Article  CAS  PubMed  Google Scholar 

  115. Zhu B, Shi J, Liu C, Li J, Cao S. In-situ self-assembly of sandwich-like Ti3C2 MXene/gold nanorods nanosheets for synergistically enhanced near-infrared responsive drug delivery. Ceram Int. 2021;47:24252–61.

    Article  CAS  Google Scholar 

  116. Darroudi M, Elnaz Nazari S, Karimzadeh M, Asgharzadeh F, Khalili-Tanha N, Asghari SZ, et al. Two-dimensional-Ti3C2 magnetic nanocomposite for targeted cancer chemotherapy. Front Bioeng Biotechnol. 2023;11:1097631.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Bai L, Yi W, Sun T, Tian Y, Zhang P, Si J, et al. Surface modification engineering of two-dimensional titanium carbide for efficient synergistic multitherapy of breast cancer. J Mater Chem B. 2020;8:6402–17.

    Article  CAS  PubMed  Google Scholar 

  118. Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B, Gillies RJ. Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res. 2006;66:5216–23.

    Article  CAS  PubMed  Google Scholar 

  119. Santha Moorthy M, Bharathiraja S, Manivasagan P, Lee KD, Oh J. Crown ether triad modified core–shell magnetic mesoporous silica nanocarrier for pH-responsive drug delivery and magnetic hyperthermia applications. New J Chem. 2017;41:10935–47.

    Article  CAS  Google Scholar 

  120. Santha Moorthy M, Bharathiraja S, Manivasagan P, Lee KD, Oh J. Synthesis of surface capped mesoporous silica nanoparticles for pH-stimuli responsive drug delivery applications. Medchemcomm. 2017;8:1797–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bakhshian Nik A, Zare H, Razavi S, Mohammadi H, Torab Ahmadi P, Yazdani N, et al. Smart drug delivery: capping strategies for mesoporous silica nanoparticles. Microporous Mesoporous Mater. 2020;299: 110115.

    Article  CAS  Google Scholar 

  122. Merino S, Martín C, Kostarelos K, Prato M, Vázquez E. Nanocomposite hydrogels: 3D polymer–nanoparticle synergies for on-demand drug delivery. ACS Nano. 2015;9:4686–97.

    Article  CAS  PubMed  Google Scholar 

  123. Dhas N, Parekh K, Pandey A, Kudarha R, Mutalik S, Mehta T. Two dimensional carbon based nanocomposites as multimodal therapeutic and diagnostic platform: a biomedical and toxicological perspective. J Controlled Release. 2019;308:130–61.

    Article  CAS  Google Scholar 

  124. Darbasizadeh B, Fatahi Y, Feyzi-barnaji B, Arabi M, Motasadizadeh H, Farhadnejad H, et al. Crosslinked-polyvinyl alcohol-carboxymethyl cellulose/ZnO nanocomposite fibrous mats containing erythromycin (PVA-CMC/ZnO-EM): fabrication, characterization and in-vitro release and anti-bacterial properties. Int J Biol Macromol. 2019;141:1137–46.

    Article  CAS  PubMed  Google Scholar 

  125. Culty M, Nguyen HA, Underhill CB. The hyaluronan receptor (CD44) participates in the uptake and degradation of hyaluronan. J Cell Biol. 1992;116:1055–62.

    Article  CAS  PubMed  Google Scholar 

  126. Wang J, Liu J, Liu Y, Wang L, Cao M, Ji Y, et al. Gd-Hybridized plasmonic Au‐nanocomposites enhanced tumor‐interior drug permeability in multimodal imaging‐guided therapy. Adv Mater. 2016;28:8950–8.

    Article  CAS  PubMed  Google Scholar 

  127. Han X, Song Z, Zhou Y, Zhang Y, Deng Y, Qin J, et al. Mitochondria-targeted high-load sound-sensitive micelles for sonodynamic therapy to treat triple-negative breast cancer and inhibit metastasis. Mater Sci Engineering: C. 2021;124: 112054.

    Article  CAS  Google Scholar 

  128. Yang Y, Yun K, Li Y, Zhang L, Zhao W, Zhu Z, et al. Self-assembled multifunctional polymeric micelles for tumor-specific bioimaging and synergistic chemo-phototherapy of cancer. Int J Pharm. 2021;602: 120651.

    Article  CAS  PubMed  Google Scholar 

  129. Qi S, Guo L, Yan S, Lee RJ, Yu S, Chen S. Hypocrellin A-based photodynamic action induces apoptosis in A549 cells through ROS-mediated mitochondrial signaling pathway. Acta Pharm Sin B. 2019;9:279–93.

    Article  PubMed  Google Scholar 

  130. Xue C-C, Li M-H, Zhao Y, Zhou J, Hu Y, Cai K-Y, et al. Tumor microenvironment-activatable Fe-doxorubicin preloaded amorphous CaCO3 nanoformulation triggers ferroptosis in target tumor cells. Sci Adv. 2020;6: 6.

    Article  Google Scholar 

  131. Gazzi A, Fusco L, Khan A, Bedognetti D, Zavan B, Vitale F, et al. Photodynamic therapy based on Graphene and MXene in Cancer Theranostics. Front Bioeng Biotechnol. 2019;7:295.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Shramova EI, Chumakov SP, Shipunova VO, Ryabova AV, Telegin GB, Kabashin AV, et al. Genetically encoded BRET-activated photodynamic therapy for the treatment of deep-seated tumors. Light Sci Appl. 2022;11:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yin Z, Ji Q, Wu D, Li Z, Fan M, Zhang H, et al. H2O2-Responsive gold nanoclusters @ mesoporous silica @ manganese dioxide nanozyme for off/on modulation and enhancement of magnetic resonance imaging and photodynamic therapy. ACS Appl Mater Interfaces. 2021;13:14928–37.

    Article  CAS  PubMed  Google Scholar 

  134. Jin J, Qiu S, Wang P, Liang X, Huang F, Wu H, et al. Cardamonin inhibits breast cancer growth by repressing HIF-1α-dependent metabolic reprogramming. J Experimental Clin Cancer Res. 2019;38:377.

    Article  Google Scholar 

  135. Li J, Xie L, Li B, Yin C, Wang G, Sang W, et al. Engineering a hydrogen-sulfide-based nanomodulator to normalize hyperactive photothermal immunogenicity for combination cancer therapy. Adv Mater. 2021;33:2008481.

    Article  CAS  Google Scholar 

  136. Li Y, Fu R, Duan Z, Zhu C, Fan D. Artificial Nonenzymatic antioxidant MXene nanosheet-anchored injectable hydrogel as a mild photothermal-controlled oxygen release platform for diabetic wound healing. ACS Nano. 2022;16:7486–502.

    Article  CAS  PubMed  Google Scholar 

  137. Shi M, Wang Z-S, Huang L-Y, Dong J-J, Zheng X-Q, Lu J-L, et al. Utilization of albumin fraction from defatted rice bran to stabilize and deliver (-)-epigallocatechin gallate. Food Chem. 2020;311: 125894.

    Article  CAS  PubMed  Google Scholar 

  138. Liao T, Chen Z, Kuang Y, Ren Z, Yu W, Rao W, et al. Small-size Ti3C2Tx MXene nanosheets coated with metal-polyphenol nanodots for enhanced cancer photothermal therapy and anti-inflammation. Acta Biomater. 2023;159:312–23.

    Article  CAS  PubMed  Google Scholar 

  139. van Beek JJP, Wimmers F, Hato SV, de Vries IJM, Skold AE. Dendritic cell cross talk with innate and innate-like effector cells in antitumor immunity: implications for DC vaccination. Crit Rev Immunol. 2014;34:517–36.

    Article  PubMed  Google Scholar 

  140. Dou Z, Ghosh K, Vizioli MG, Zhu J, Sen P, Wangensteen KJ, et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature. 2017;550:402–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19:179–92.

    Article  CAS  PubMed  Google Scholar 

  142. Janda CY, Dang LT, You C, Chang J, de Lau W, Zhong ZA, et al. Surrogate wnt agonists that phenocopy canonical wnt and β-catenin signalling. Nature. 2017;545:234–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cui D, Kong N, Ding L, Guo Y, Yang W, Yan F. Ultrathin 2D titanium carbide MXene (Ti3C2Tx) nanoflakes activate WNT/HIF-1α-mediated metabolism reprogramming for periodontal regeneration. Adv Healthc Mater. 2021;10:2101215.

    Article  CAS  Google Scholar 

  144. Wei Y, Bao R, Hu L, Geng Y, Chen X, Wen Y, et al. Ti3C2 (MXene) nanosheets disrupt spermatogenesis in male mice mediated by the ATM/p53 signaling pathway. Biol Direct. 2023;18:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Guo Y, Terazzi E, Seemann R, Fleury JB, Baulin VA. Direct proof of spontaneous translocation of lipid-covered hydrophobic nanoparticles through a phospholipid bilayer. Sci Adv. 2016;2:2.

    Article  Google Scholar 

  146. Xu KY, Takimoto E, Fedarko NS. Activation of (Na++ K+)-ATPase induces positive inotropy in intact mouse heart in vivo. Biochem Biophys Res Commun. 2006;349:582–7.

    Article  CAS  PubMed  Google Scholar 

  147. Lee DI, Klein MG, Zhu W, Xiao R-P, Gerzanich V, Xu KY. Activation of (Na++ K+)-ATPase modulates Cardiac L-Type Ca2 + Channel function. Mol Pharmacol. 2009;75:774–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ma Y, Hinde E, Gaus K. Nanodomains in biological membranes. Essays Biochem. 2015;57:93–107.

    Article  PubMed  Google Scholar 

  149. Levental I, Veatch SL. The Continuing mystery of lipid rafts. J Mol Biol. 2016;428:4749–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Dong LM, Ye C, Zheng LL, Gao ZF, Xia F. Two-dimensional metal carbides and nitrides (MXenes): preparation, property, and applications in cancer therapy. Nanophotonics. 2020;9:2125–45.

    Article  CAS  Google Scholar 

  151. Nasrallah GK, Al-Asmakh M, Rasool K, Mahmoud KA. Ecotoxicological assessment of Ti3C2Tx (MXene) using a zebrafish embryo model. Environ Sci Nano. 2018;5:1002–11.

    Article  CAS  Google Scholar 

  152. Wen Y, Hu L, Li J, Geng Y, Yang Y, Wang J, et al. Exposure to two-dimensional ultrathin Ti3C2 (MXene) nanosheets during early pregnancy impairs neurodevelopment of offspring in mice. J Nanobiotechnol. 2022;20:108.

    Article  CAS  Google Scholar 

  153. Liu X, Tang I, Wainberg ZA, Meng H. Safety considerations of cancer nanomedicine—a key step toward translation. Small. 2020;16:73.

    Google Scholar 

  154. https://www.fda.gov/media/109910/downloadDrug. (Accessed: Jan 2020).

  155. Khan MI, Zahra Q, Batool A, Kalsoom F, Gao F, Ali S. Trends in nanotechnology to improve therapeutic efficacy across special structures. OpenNano. 2022;7:100049.

    Article  Google Scholar 

  156. Abbas JJ, Smith B, Poluta M, Velazquez-Berumen A. Improving health-care delivery in low-resource settings with nanotechnology. Nanobiomedicine (Rij). 2017;4:184954351770115.

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to School of Health Sciences and Technology (SoHST), UPES, Dehradun, Uttarakhand, India.

Funding

There is no role of funding agencies to design this study materials and data interpretation.

Author information

Authors and Affiliations

Authors

Contributions

Vishal Kumar Deb: Writing – original draft, Writing – review & editing, Utkarsh Jain: Conceptualization, Supervision, Writing – review & editing.

Corresponding author

Correspondence to Utkarsh Jain.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, V.K., Jain, U. Ti3C2 (MXene), an advanced carrier system: role in photothermal, photoacoustic, enhanced drugs delivery and biological activity in cancer therapy. Drug Deliv. and Transl. Res. (2024). https://doi.org/10.1007/s13346-024-01572-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13346-024-01572-3

Keywords

Navigation