Skip to main content

Advertisement

Log in

Fabrication and characterization of coated microneedle patches based on PEGDA for transdermal administration of metformin

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Type 2 diabetes is one of the major challenges that the world is facing today. However, metformin (MET) as most type 2 diabetics’ first-line oral hypoglycemic drug may cause serious side effects such as gastrointestinal irritation and nausea which reduce the patients’ medication compliance. Therefore, the aim of the study was to design a safe and effective self-treatment device for the delivery of MET. Here, a kind of coated microneedle (MN) patches based on poly(ethylene glycol)diacrylate (PEGDA) were prepared by a two-step casting method and photopolymerization process for transdermal administration of MET. The needles wrapped with drug-loaded hyaluronic acid (HA) coating showed promising mechanical properties and drug delivery ability that allowed them to penetrate the skin barrier for rapid drug delivery, and they had no skin irritancy. The in vivo experiment of type 2 diabetic rats showed a satisfying hypoglycemic effect of the coated MN patches. The study shows that the prepared MN patches will be a potential method for the treatment of type 2 diabetes in the future.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Tuomi T, Santoro N, Caprio S, Cai M, Weng J, Groop L. The many faces of diabetes: a disease with increasing heterogeneity. Lancet. 2014;383(9922):1084–94. https://doi.org/10.1016/S0140-6736(13)62219-9.

    Article  PubMed  Google Scholar 

  2. Saely CH, Aczel S, Marte T, Langer P, Drexel H. Cardiovascular complications in Type 2 diabetes mellitus depend on the coronary angiographic state rather than on the diabetic state. Diabetologia. 2004;47(1):145–6. https://doi.org/10.1007/s00125-003-1274-6.

    Article  CAS  PubMed  Google Scholar 

  3. Brogden NK, Milewski M, Ghosh P, Hardi L, Crofford LJ, Stinchcomb AL. Diclofenac delays micropore closure following microneedle treatment in human subjects. J Control Release. 2012;163(2):220–9. https://doi.org/10.1016/j.jconrel.2012.08.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017;389(10085):2239–51. https://doi.org/10.1016/S0140-6736(17)30058-2.

    Article  CAS  PubMed  Google Scholar 

  5. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI, Simonson DC, Testa MA, Weiss R. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1:15019. https://doi.org/10.1038/nrdp.2015.19.

    Article  PubMed  Google Scholar 

  6. Sood A, Panchagnula R. Peroral route: an opportunity for protein and peptide drug delivery. Chem Rev. 2001;101(11):3275–303. https://doi.org/10.1021/cr000700m.

    Article  CAS  PubMed  Google Scholar 

  7. Xiao Y, Tang Z, Wang J, Liu C, Kong N, Farokhzad OC, Tao W. Oral insulin delivery platforms: strategies to address the biological barriers. Angew Chem Int Ed Engl. 2020;59(45):19787–95. https://doi.org/10.1002/anie.202008879.

    Article  CAS  PubMed  Google Scholar 

  8. Banerjee S, Talukdar I, Banerjee A, Gupta A, Balaji A, Aduri R. Type II diabetes mellitus and obesity: common links, existing therapeutics and future developments. J Biosci. 2019;44(6). https://doi.org/10.1007/s12038-019-9962-7.

  9. Liu S, Jin MN, Quan YS, Kamiyama F, Katsumi H, Sakane T, Yamamoto A. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin. J Control Release. 2012;161(3):933–41. https://doi.org/10.1016/j.jconrel.2012.05.030.

    Article  CAS  PubMed  Google Scholar 

  10. Song ZQ, Guo XH, Ji LN, Huang X, Hirsch LJ, Strauss KW. Insulin injection technique in China compared with the rest of the world. Diabetes Ther. 2018;9(6):2357–68. https://doi.org/10.1007/s13300-018-0525-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3(2):115–24. https://doi.org/10.1038/nrd1304.

    Article  CAS  PubMed  Google Scholar 

  12. Doukas AG, Kollias N. Transdermal drug delivery with a pressure wave. Adv Drug Deliv Rev. 2004;56(5):559–79. https://doi.org/10.1016/j.addr.2003.10.031.

    Article  CAS  PubMed  Google Scholar 

  13. Bhadale RS, Londhe VY. Solid microneedle assisted transepidermal delivery of iloperidone loaded film: characterization and skin deposition studies. J Drug Deliv Sci Tec. 2023;79. https://doi.org/10.1016/j.jddst.2022.104028.

  14. Zuo W, Li J, Jiang W, Zhang M, Ma Y, Gu Q, Wang X, Cai L, Shi L, Sun M. Dose-sparing intradermal DTaP-sIPV immunization with a hollow microneedle leads to superior immune responses. Front Microbiol. 2021;2:757375. https://doi.org/10.3389/fmicb.2021.757375.

  15. Al-Kasasbeh R, Brady AJ, Courtenay AJ, Larraneta E, McCrudden MTC, O’Kane D, Liggett S, Donnelly RF. Evaluation of the clinical impact of repeat application of hydrogel-forming microneedle array patches. Drug Deliv Transl Res. 2020;10(3):690–705. https://doi.org/10.1007/s13346-020-00727-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang C, Gou K, Yue X, Zhao S, Zeng R, Qu Y, Zhang C. A novel hyaluronic acid-based dissolving microneedle patch loaded with ginsenoside Rg3 liposome for effectively alleviate psoriasis. Mater Design. 2021;224. https://doi.org/10.1016/j.matdes.2022.111363.

  17. Jin M, Jeon WJ, Lee H, Jung M, Kim HE, Yoo H, Won JH, Kim JC, Park JH, Yang MJ, Lee HK, Cho CW. Preparation and evaluation of rapid disintegrating formulation from coated microneedle. Drug Deliv Transl Res. 2022;12(2):415–25. https://doi.org/10.1007/s13346-021-01046-w.

    Article  CAS  PubMed  Google Scholar 

  18. Hao Y, Li W, Zhou X, Yang F, Qian Z. Microneedles-based transdermal drug delivery systems: a review. J Biomed Nanotechnol. 2017;13(12):1581–97. https://doi.org/10.1166/jbn.2017.2474.

    Article  CAS  PubMed  Google Scholar 

  19. Aldawood FK, Andar A, Desai S. A comprehensive review of microneedles: types, materials, processes, characterizations and applications. Polymers (Basel). 2021;13(16). https://doi.org/10.3390/polym13162815.

  20. Elahpour N, Pahlevanzadeh F, Kharaziha M, Bakhsheshi-Rad HR, Ramakrishna S, Berto F. 3D printed microneedles for transdermal drug delivery: a brief review of two decades. Int J Pharm. 2021;597:120301. https://doi.org/10.1016/j.ijpharm.2021.120301.

  21. Chen Y, Chen BZ, Wang QL, Jin X, Guo XD. Fabrication of coated polymer microneedles for transdermal drug delivery. J Control Release. 2017;265:14–21. https://doi.org/10.1016/j.jconrel.2017.03.383.

    Article  CAS  PubMed  Google Scholar 

  22. Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547–68. https://doi.org/10.1016/j.addr.2012.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kusamori K, Katsumi H, Sakai R, Hayashi R, Hirai Y, Tanaka Y, Hitomi K, Quan YS, Kamiyama F, Yamada K, Sumida S, Kishi K, Hashiba K, Sakane T, Yamamoto A. Development of a drug-coated microneedle array and its application for transdermal delivery of interferon alpha. Biofabrication. 2016;8(1):015006. https://doi.org/10.1088/1758-5090/8/1/015006.

  24. Wilke N, Mulcahy A, Ye SR, Morrissey A. Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectron J. 2005;36(7):650–6. https://doi.org/10.1016/j.mejo.2005.04.044.

    Article  CAS  Google Scholar 

  25. Tas C, Mansoor S, Kalluri H, Zarnitsyn VG, Choi SO, Banga AK, Prausnitz MR. Delivery of salmon calcitonin using a microneedle patch. Int J Pharm. 2012;423(2):257–63. https://doi.org/10.1016/j.ijpharm.2011.11.046.

    Article  CAS  PubMed  Google Scholar 

  26. Bystrova S, Luttge R. Micromolding for ceramic microneedle arrays. Microelectron Eng. 2011;88(8):1681–4. https://doi.org/10.1016/j.mee.2010.12.067.

    Article  CAS  Google Scholar 

  27. Kochhar JS, Quek TC, Soon WJ, Choi J, Zou S, Kang L. Effect of microneedle geometry and supporting substrate on microneedle array penetration into skin. J Pharm Sci. 2013;102(11):4100–8. https://doi.org/10.1002/jps.23724.

    Article  CAS  PubMed  Google Scholar 

  28. Williams S, Tamburic S, Stensvik H, Weber M. Changes in skin physiology and clinical appearance after microdroplet placement of hyaluronic acid in aging hands. J Cosmet Dermatol-Us. 2009;8(3):216–25. https://doi.org/10.1111/j.1473-2165.2009.00447.x.

    Article  Google Scholar 

  29. Zhang XP, Wang BB, Hu LF, Fei WM, Cui Y, Guo XD. Safety evaluation of 3-month effects of microneedle patches prepared from hyaluronic acid in mice. Biochem Eng J. 2021;176. https://doi.org/10.1016/j.bej.2021.108157.

  30. He L, Lin D, Wang Y, Xiao Y, Che J. Electroactive SWNT/PEGDA hybrid hydrogel coating for bio-electrode interface. Colloids Surf B Biointerfaces. 2011;87(2):273–9. https://doi.org/10.1016/j.colsurfb.2011.05.028.

    Article  CAS  PubMed  Google Scholar 

  31. Xue P, Zhang X, Chuah YJ, Wu Y, Kang Y. Flexible PEGDA-based microneedle patches with detachable PVP–CD arrowheads for transdermal drug delivery. Rsc Adv. 2015;5(92):75204–9. https://doi.org/10.1039/c5ra09329e.

    Article  CAS  Google Scholar 

  32. Yuan M, Liu K, Jiang T, Li S, Chen J, Wu Z, Li W, Tan R, Wei W, Yang X, Dai H, Chen Z. GelMA/PEGDA microneedles patch loaded with HUVECs-derived exosomes and Tazarotene promote diabetic wound healing. Journal of nanobiotechnology. 2022;20(1):147–147. https://doi.org/10.1186/s12951-022-01354-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang N, Zhou X, Liu L, Zhao L, Xie H, Yang Z. Dissolving polymer microneedles for transdermal delivery of insulin. Front Pharmacol. 2021;12:719905. https://doi.org/10.3389/fphar.2021.719905.

  34. Zhang Y, Jiang G, Yu W, Liu D, Xu B. Microneedles fabricated from alginate and maltose for transdermal delivery of insulin on diabetic rats. Mater Sci Eng C Mater Biol Appl. 2018;85:18–26. https://doi.org/10.1016/j.msec.2017.12.006.

    Article  CAS  PubMed  Google Scholar 

  35. He MC, Chen BZ, Ashfaq M, Guo XD. Assessment of mechanical stability of rapidly separating microneedles for transdermal drug delivery. Drug Deliv Transl Res. 2018;8(5):1034–42. https://doi.org/10.1007/s13346-018-0547-z.

    Article  CAS  PubMed  Google Scholar 

  36. Fonseca DFS, Costa PC, Almeida IF, Dias-Pereira P, Correia-Sa I, Bastos V, Oliveira H, Duarte-Araujo M, Morato M, Vilela C, Silvestre AJD, Freire CSR. Pullulan microneedle patches for the efficient transdermal administration of insulin envisioning diabetes treatment. Carbohydr Polym. 2020;241:116314. https://doi.org/10.1016/j.carbpol.2020.116314.

  37. Ahmad Z, Khan MI, Siddique MI, Sarwar HS, Shahnaz G, Hussain SZ, Bukhari NI, Hussain I, Sohail MF. Fabrication and characterization of thiolated chitosan microneedle patch for transdermal delivery of tacrolimus. AAPS PharmSciTech. 2020;21(2):68. https://doi.org/10.1208/s12249-019-1611-9.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao X, Li X, Zhang P, Du J, Wang Y. Tip-loaded fast-dissolving microneedle patches for photodynamic therapy of subcutaneous tumor. J Control Release. 2018;286:201–9. https://doi.org/10.1016/j.jconrel.2018.07.038.

    Article  CAS  PubMed  Google Scholar 

  39. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003;24(7):1121–31. https://doi.org/10.1016/s0142-9612(02)00445-3.

    Article  CAS  PubMed  Google Scholar 

  40. Parveen K, Khan MR, Mujeeb M, Siddiqui WA. Protective effects of Pycnogenol on hyperglycemia-induced oxidative damage in the liver of type 2 diabetic rats. Chem Biol Interact. 2010;186(2):219–27. https://doi.org/10.1016/j.cbi.2010.04.023.

    Article  CAS  PubMed  Google Scholar 

  41. Kusamori K, Katsumi H, Abe M, Ueda A, Sakai R, Hayashi R, Hirai Y, Quan Y-s, Kamiyama F, Sakane T, Yamamoto A. Development of a novel transdermal patch of alendronate, a nitrogen-containing bisphosphonate, for the treatment of osteoporosis. J Bone Miner Res. 2010;25(12):2582–91. https://doi.org/10.1002/jbmr.147.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang JN, Chen BZ, Ashfaq M, Zhang XP, Guo XD. Development of a BDDE-crosslinked hyaluronic acid based microneedles patch as a dermal filler for anti-ageing treatment. J Ind Eng Chem. 2018;65:363–9. https://doi.org/10.1016/j.jiec.2018.05.007.

    Article  CAS  Google Scholar 

  43. Ansari A, Trehan R, Watson C, Senyo S. Increasing silicone mold longevity: a review of surface modification techniques for PDMS-PDMS double casting. Soft Mater. 2021;19(4):388–99. https://doi.org/10.1080/1539445x.2020.1850476.

    Article  CAS  PubMed  Google Scholar 

  44. Munster L, Capakova Z, Humpolicek P, Kuritka I, Christensen BE, Vicha J. Dicarboxylated hyaluronate: synthesis of a new, highly functionalized and biocompatible derivative. Carbohydr Polym. 2022;292:119661. https://doi.org/10.1016/j.carbpol.2022.119661.

  45. Chinnaiyan SK, Karthikeyan D, Gadela VR. Development and characterization of metformin loaded pectin nanoparticles for T2 diabetes mellitus. Pharm Nanotechnol. 2018;6(4):253–63. https://doi.org/10.2174/2211738507666181221142406.

    Article  CAS  PubMed  Google Scholar 

  46. Aoyagi S, Izumi H, Fukuda M. Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito’s proboscis. Sens Actuators, A. 2008;143(1):20–8. https://doi.org/10.1016/j.sna.2007.06.007.

    Article  CAS  Google Scholar 

  47. Chu LY, Choi SO, Prausnitz MR. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: bubble and pedestal microneedle designs. J Pharm Sci. 2010;99(10):4228–38. https://doi.org/10.1002/jps.22140.

    Article  CAS  PubMed  Google Scholar 

  48. Yu WJ, Jiang GH, Zhang Y, Liu DP, Xu B, Zhou JY. Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin. Mat Sci Eng C-Mater. 2017;80:187–96. https://doi.org/10.1016/j.msec.2017.05.143.

    Article  CAS  Google Scholar 

  49. Zhu ZZ, Luo HF, Lu WD, Luan HS, Wu YB, Luo J, Wang YJ, Pi JX, Lim CY, Wang H. Rapidly dissolvable microneedle patches for transdermal delivery of exenatide. Pharm Res-Dordr. 2014;31(12):3348–60. https://doi.org/10.1007/s11095-014-1424-1.

    Article  CAS  Google Scholar 

  50. Chen MC, Ling MH, Lai KY, Pramudityo E. Chitosan microneedle patches for sustained transdermal delivery of macromolecules. Biomacromol. 2012;13(12):4022–31. https://doi.org/10.1021/bm301293d.

    Article  CAS  Google Scholar 

  51. Larraneta E, Moore J, Vicente-Perez EM, Gonzalez-Vazquez P, Lutton R, Woolfson AD, Donnelly RF. A proposed model membrane and test method for microneedle insertion studies. Int J Pharm. 2014;472(1–2):65–73. https://doi.org/10.1016/j.ijpharm.2014.05.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee IC, He JS, Tsai MT, Lin KC. Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery. J Mater Chem B. 2015;3(2):276–85. https://doi.org/10.1039/c4tb01555j.

    Article  CAS  PubMed  Google Scholar 

  53. Gomaa YA, Morrow DI, Garland MJ, Donnelly RF, El-Khordagui LK, Meidan VM. Effects of microneedle length, density, insertion time and multiple applications on human skin barrier function: assessments by transepidermal water loss. Toxicol In Vitro. 2010;24(7):1971–8. https://doi.org/10.1016/j.tiv.2010.08.012.

    Article  CAS  PubMed  Google Scholar 

  54. Ling MH, Chen MC. Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats. Acta Biomater. 2013;9(11):8952–61. https://doi.org/10.1016/j.actbio.2013.06.029.

    Article  CAS  PubMed  Google Scholar 

  55. Yang S-J, Jeong J-O, Lim Y-M, Park J-S. Synthesis and characterization of PVP microneedle patch using metal bioelectrodes for novel drug delivery system. Mater Design. 2021;201:109485. https://doi.org/10.1016/j.matdes.2021.109485.

  56. Gao Y, Hou M, Yang R, Zhang L, Xu Z, Kang Y, Xue P. Transdermal delivery of therapeutics through dissolvable gelatin/sucrose films coated on PEGDA microneedle arrays with improved skin permeability. J Mater Chem B. 2019;7(47):7515–24. https://doi.org/10.1039/c9tb01994d.

    Article  CAS  PubMed  Google Scholar 

  57. Jamaledin R, Makvandi P, Yiu CKY, Agarwal T, Vecchione R, Sun W, Maiti TK, Tay FR, Netti PA. Engineered microneedle patches for controlled release of active compounds: recent advances in release profile tuning. Adv Therap. 2020;3(12). https://doi.org/10.1002/adtp.202000171.

  58. Chen BZ, He MC, Zhang XP, Fei WM, Cui Y, Guo XD. A novel method for fabrication of coated microneedles with homogeneous and controllable drug dosage for transdermal drug delivery. Drug Deliv Transl Res. 2022;12(11):2730–9. https://doi.org/10.1007/s13346-022-01123-8.

    Article  CAS  PubMed  Google Scholar 

  59. Xing M, Zhang S, Ma Y, Chen Y, Yang G, Zhou Z, Gao Y. Preparation and evaluation of dissolving microneedle loaded with azelaic acid for acne vulgaris therapy. J Drug Deliv Sci Tec. 2020;75. https://doi.org/10.1016/j.jddst.2022.103667.

  60. Li W, Terry RN, Tang J, Feng MR, Schwendeman SP, Prausnitz MR. Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat Biomed Eng. 2019;3(3):220–9. https://doi.org/10.1038/s41551-018-0337-4.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Open Fund Project of Sanya Science and Education Innovation Park of Wuhan University of Technology (No. 2021KF0012), Guangdong Basic and Applied Basic Research Foundation (No. 2021B1515120091), and Technology Development Project of Shandong Weigao Orthopedic Materials Co., LTD (No. 20221h0074).

Author information

Authors and Affiliations

Authors

Contributions

Bo Zhou: conceptualization, methodology, investigation, formal analysis, data curation, visualization, writing—original draft, writing—review and editing; Zhendong Guo: methodology, investigation; Peiwen Zhao: methodology, supervision; Hao Wang: methodology, investigation; Siyan Dong: methodology, investigation; Bo Cheng: methodology, investigation; Jing Yang: methodology; Binbin Li: methodology, investigation, writing—review and editing, supervision; Xinyu Wang: conceptualization, supervision, project administration, funding acquisition, writing—review and editing.

Corresponding authors

Correspondence to Binbin Li or Xinyu Wang.

Ethics declarations

Ethics approval

All animals were treated according to the standard guidelines approved by the Wuhan University of Technology Ethics Committee (SYXK 2017–0092). The experiments comply with the current laws of the country.

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Guo, Z., Zhao, P. et al. Fabrication and characterization of coated microneedle patches based on PEGDA for transdermal administration of metformin. Drug Deliv. and Transl. Res. 14, 131–142 (2024). https://doi.org/10.1007/s13346-023-01387-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01387-8

Keywords

Navigation