Skip to main content

Advertisement

Log in

Assessing acute colitis induced by dextran sulfate sodium in rats and its impact on gastrointestinal fluids

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Dextran sulfate sodium (DSS) is commonly used to induce colitis in rats. While the DSS-induced colitis rat model can be used to test new oral drug formulations for the treatment of inflammatory bowel disease, the effect of the DSS treatment on the gastrointestinal tract has not been thoroughly characterized. Additionally, the use of different markers to assess and confirm successful induction of colitis is somewhat inconsistent. This study aimed to investigate the DSS model to improve the preclinical evaluation of new oral drug formulations. The induction of colitis was evaluated based on the disease activity index (DAI) score, colon length, histological tissue evaluation, spleen weight, plasma C-reactive protein, and plasma lipocalin-2. Furthermore, the study investigated how the DSS-induced colitis affected the luminal pH, lipase activity, and concentrations of bile salts, polar lipids, and neutral lipids. For all evaluated parameters, healthy rats were used as a reference. The DAI score, colon length, and histological evaluation of the colon were effective disease indicators in DSS-induced colitis rats, while spleen weight, plasma C-reactive protein, and plasma lipocalin-2 were not. The luminal pH of the colon and bile salt- and neutral lipid concentrations in regions of the small intestine were lower in DSS-induced rats compared to healthy rats. Overall, the colitis model was deemed relevant for investigating ulcerative colitis-specific formulations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

CD:

Crohn’s disease

CRP:

C-reactive protein

DAI:

Disease activity index

DSS:

Dextran sulfate sodium

DSS rats:

Dextran sulfate sodium-induced colitis rats

GI:

Gastrointestinal

HEP:

Humane endpoint

IBD:

Inflammatory bowel disease

RP-HPLC-CAD:

Reversed-phase high-performance liquid chromatography-charged aerosol detection

UC:

Ulcerative colitis

References

  1. Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347:417–29. https://doi.org/10.1056/NEJMra020831.

    Article  CAS  PubMed  Google Scholar 

  2. Press AG, Hauptmann IA, Hauptmann L, Fuchs B, Fuchs M, Ewe K, Ramadori G. Gastrointestinal pH profiles in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 1998;12:673-8. https://doi.org/10.1046/j.1365-2036.1998.00358.x.

  3. Fiocchi C. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology. 1998;115:182–205. https://doi.org/10.1016/S0016-5085(98)70381-6.

    Article  CAS  PubMed  Google Scholar 

  4. Harbord M, Eliakim R, Bettenworth D, Karmiris K, Katsanos K, Kopylov U, Kucharzik T, Molnár T, Raine T, Sebastian S, et al. Third European Evidence-Based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 2: Current Management. J Crohns Colitis 2017;11:769–4.https://doi.org/10.1093/ecco-jcc/jjx009.

  5. Torres J, Bonovas S, Doherty G, Kucharzik T, Gisbert JP, Raine T, Adamina M, Armuzzi A, Bachmann O, Bager P, et al. ECCO Guidelines on therapeutics in crohn’s disease: medical treatment. J Crohns Colitis. 2020;14:4–22. https://doi.org/10.1093/ecco-jcc/jjz180.

    Article  PubMed  Google Scholar 

  6. Schmidt C, Grunert PC, Stallmach A. An update for pharmacologists on new treatment options for inflammatory bowel disease: the clinicians’ perspective. Front Pharmacol. 2021:12.

  7. Sabino J, Verstockt B, Vermeire S, Ferrante M. New biologics and small molecules in inflammatory bowel disease: an update. Ther Adv Gastroenterol. 2019;12:1756284819853208. https://doi.org/10.1177/1756284819853208.

    Article  CAS  Google Scholar 

  8. Bramhall M, Flórez-Vargas O, Stevens R, Brass A, Cruickshank S. Quality of methods reporting in animal models of colitis. Inflamm Bowel Dis. 2015;21:1248–59.https://doi.org/10.1097/MIB.0000000000000369.

  9. Morin C, Blier PU, Fortin S. MAG-EPA reduces severity of DSS-induced colitis in rats. Am. J. Physiol.-Gastrointest. Liver Physiol. 2016;310:G808–G821.https://doi.org/10.1152/ajpgi.00136.2015.

  10. Beloqui A, Coco R, Alhouayek M, Solinís MÁ, Rodríguez-Gascón A, Muccioli GG, Préat V. Budesonide-Loaded nanostructured lipid carriers reduce inflammation in murine DSS-induced colitis. Int J Pharm. 2013;454:775–83. https://doi.org/10.1016/j.ijpharm.2013.05.017.

    Article  CAS  PubMed  Google Scholar 

  11. Melero A, Draheim C, Hansen S, Giner E, Carreras JJ, Talens-Visconti R, Garrigues TM, Peris JE, Recio MC, Giner R, et al. Targeted Delivery of cyclosporine a by polymeric nanocarriers improves the therapy of inflammatory bowel disease in a relevant mouse model. Eur J Pharm Biopharm. 2017;119:361–71. https://doi.org/10.1016/j.ejpb.2017.07.004.

    Article  CAS  PubMed  Google Scholar 

  12. Yeom J, Ma S, Kim J-K, Lim Y-H. Oxyresveratrol Ameliorates dextran sulfate sodium-induced colitis in rats by suppressing inflammation. Molecules. 2021;26:2630. https://doi.org/10.3390/molecules26092630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Poulsen SS, Kissow H, Hare K, Hartmann B, Thim L. Luminal and parenteral TFF2 and TFF3 dimer and monomer in two models of experimental colitis in the rat. Regul Pept. 2005;126:163–71. https://doi.org/10.1016/j.regpep.2004.09.007.

    Article  CAS  PubMed  Google Scholar 

  14. Elson CO, Sartor RB, Tennyson GS, Riddell RH. Experimental models of inflammatory bowel disease. Gastroenterology. 1995;109:1344–67. https://doi.org/10.1016/0016-5085(95)90599-5.

    Article  CAS  PubMed  Google Scholar 

  15. Eichele DD, Kharbanda KK. Dextran Sodium sulfate colitis murine model: an indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J Gastroenterol. 2017;23:6016–29. https://doi.org/10.3748/wjg.v23.i33.6016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lamprecht A, Yamamoto H, Takeuchi H, Kawashima YA. PH-sensitive microsphere system for the colon delivery of tacrolimus containing nanoparticles. J Control Release Off J Control Release Soc. 2005;104:337–46.https://doi.org/10.1016/j.jconrel.2005.02.011.

  17. Makhlof A, Tozuka Y, Takeuchi H. PH-Sensitive nanospheres for colon-specific drug delivery in experimentally induced colitis rat model. Eur J Pharm Biopharm. 2009;72:1–8. https://doi.org/10.1016/j.ejpb.2008.12.013.

    Article  CAS  PubMed  Google Scholar 

  18. Laroui H, Dalmasso G, Nguyen HTT, Yan Y, Sitaraman SV, Merlin D. Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model. Gastroenterology. 2010;138:843-853.e2. https://doi.org/10.1053/j.gastro.2009.11.003.

    Article  CAS  PubMed  Google Scholar 

  19. Varshosaz J, Emami J, Tavakoli N, Minaiyan M, Rahmani N, Dorkoosh F, Mahzouni P. Pectin Film coated pellets for colon-targeted delivery of budesonide: in-vitro/in-vivo evaluation in induced ulcerative colitis in rat. Iran J Pharm Res IJPR. 2012;11:733–45.

    CAS  PubMed  Google Scholar 

  20. Madsen CM, Feng K-I, Leithead A, Canfield N, Jørgensen SA, Müllertz A, Rades T. Effect of composition of simulated intestinal media on the solubility of poorly soluble compounds investigated by design of experiments. Eur J Pharm Sci. 2018;111:311–9. https://doi.org/10.1016/j.ejps.2017.10.003.

    Article  CAS  PubMed  Google Scholar 

  21. Holm R, Müllertz A, Mu H. Bile salts and their importance for drug absorption. Int J Pharm. 2013;453:44–55. https://doi.org/10.1016/j.ijpharm.2013.04.003.

    Article  CAS  PubMed  Google Scholar 

  22. Christfort JF, Strindberg S, Plum J, Hall-Andersen J, Janfelt C, Nielsen LH, Müllertz A. Developing a predictive in vitro dissolution model based on gastrointestinal fluid characterisation in rats. Eur J Pharm Biopharm. 2019;142:307–14. https://doi.org/10.1016/j.ejpb.2019.07.007.

    Article  CAS  PubMed  Google Scholar 

  23. Tanaka Y, Hara T, Waki R, Nagata S. Regional differences in the components of luminal water from rat gastrointestinal tract and comparison with other species. J Pharm Pharm Sci. 2012;15:510–8. https://doi.org/10.18433/J3F602.

    Article  CAS  PubMed  Google Scholar 

  24. Fuchs A, Dressman JB. Composition and physicochemical properties of fasted-state human duodenal and jejunal fluid: a critical evaluation of the available data. J Pharm Sci. 2014;103:3398–411. https://doi.org/10.1002/jps.24183.

    Article  CAS  PubMed  Google Scholar 

  25. Bergström CAS, Holm R, Jørgensen SA, Andersson SBE, Artursson P, Beato S, Borde A, Box K, Brewster M, Dressman J, et al. Early Pharmaceutical profiling to predict oral drug absorption: current status and unmet needs. Eur J Pharm Sci. 2014;57:173–99. https://doi.org/10.1016/j.ejps.2013.10.015.

    Article  CAS  PubMed  Google Scholar 

  26. Fallingborg J, Christensen LA, Jacobsen BA, Rasmussen SN. Very low intraluminal colonic PH in patients with active ulcerative colitis. Dig Dis Sci. 1993;38:1989–93. https://doi.org/10.1007/BF01297074.

    Article  CAS  PubMed  Google Scholar 

  27. Ewe K, Schwartz S, Petersen S, Press AG. Inflammation Does not decrease intraluminal ph in chronic inflammatory bowel disease. Dig Dis Sci. 1999;44:1434–9. https://doi.org/10.1023/A:1026664105112.

    Article  CAS  PubMed  Google Scholar 

  28. Nugent SG, Kumar D, Rampton DS, Evans DF. Intestinal luminal PH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut. 2001;48:571–7. https://doi.org/10.1136/gut.48.4.571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vertzoni M, Goumas K, Söderlind E, Abrahamsson B, Dressman JB, Poulou A, Reppas C. Characterization of the ascending colon fluids in ulcerative colitis. Pharm Res. 2010;27:1620–6. https://doi.org/10.1007/s11095-010-0158-y.

    Article  CAS  PubMed  Google Scholar 

  30. Diakidou A, Vertzoni M, Goumas K, Söderlind E, Abrahamsson B, Dressman J, Reppas C. Characterization of the contents of ascending colon to which drugs are exposed after oral administration to healthy adults. Pharm Res. 2009;26:2141–51. https://doi.org/10.1007/s11095-009-9927-x.

    Article  CAS  PubMed  Google Scholar 

  31. Gnewuch C, Liebisch G, Langmann T, Dieplinger B, Mueller T, Haltmayer M, Dieplinger H, Zahn A, Stremmel W, Rogler G, et al. Serum bile acid profiling reflects enterohepatic detoxification state and intestinal barrier function in inflammatory bowel disease. World J Gastroenterol. 2009;15:3134–41. https://doi.org/10.3748/wjg.15.3134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tiratterra E, Franco P, Porru E, Katsanos KH, Christodoulou DK, Roda G. Role of bile acids in inflammatory bowel disease. Ann Gastroenterol. 2018;31:266–72. https://doi.org/10.20524/aog.2018.0239.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wirtz S, Neufert C, Weigmann B, Neurath MF. Chemically induced mouse models of intestinal inflammation. Nat Protoc. 2007;2:541–6. https://doi.org/10.1038/nprot.2007.41.

    Article  CAS  PubMed  Google Scholar 

  34. Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol. 2014;25:1–15. https://doi.org/10.1002/0471142735.im1525s104.

  35. Martin JC, Bériou G, Josien R. Dextran sulfate sodium (DSS)-induced acute colitis in the rat. In Suppression and regulation of immune responses: Methods Protoc 2016;2:197–203.

  36. Gaudio E, Taddei G, Vetuschi A, Sferra R, Frieri G, Ricciardi G, Caprilli R. Dextran Sulfate Sodium (DSS) Colitis in rats: clinical, structural, and ultrastructural aspects. Dig Dis Sci. 1999;44:1458–75. https://doi.org/10.1023/a:1026620322859.

    Article  CAS  PubMed  Google Scholar 

  37. Murthy SNS, Cooper HS, Shim H, Shah RS, Ibrahim SA, Sedergran DJ. Treatment of dextran sulfate sodium-induced murine colitis by intracolonic cyclosporin. Dig Dis Sci. 1993;38:1722–34. https://doi.org/10.1007/BF01303184.

    Article  CAS  PubMed  Google Scholar 

  38. Erben U, Loddenkemper C, Doerfel K, Spieckermann S, Haller D, Heimesaat MM, Zeitz M, Siegmund B, Kühl AA. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int J Clin Exp Pathol. 2014;7:4557–76.

    PubMed  PubMed Central  Google Scholar 

  39. Chassaing B, Srinivasan G, Delgado MA, Young AN, Gewirtz AT, Vijay-Kumar M, Bereswill S. Fecal lipocalin 2, a sensitive and broadly dynamic non-invasive biomarker for intestinal inflammation. PLoS ONE. 2012;7:1–8. https://doi.org/10.1371/journal.pone.0044328.

    Article  CAS  Google Scholar 

  40. Nunes NS, Chandran P, Sundby M, Visioli F, da Costa Gonçalves F, Burks SR, Paz AH, Frank JA. Therapeutic Ultrasound attenuates DSS-induced colitis through the cholinergic anti-inflammatory pathway. EBioMedicine. 2019;45:495–510. https://doi.org/10.1016/j.ebiom.2019.06.033.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Krieglstein CF, Cerwinka WH, Laroux FS, Grisham MB, Schürmann G, Brüwer M, Granger DN. Role of appendix and spleen in experimental colitis. J Surg Res. 2001;101:166–75. https://doi.org/10.1006/jsre.2001.6223.

    Article  CAS  PubMed  Google Scholar 

  42. Rajendiran V, Natarajan V, Devaraj SN. Anti-inflammatory activity of alpinia officinarum hance on rat colon inflammation and tissue damage in DSS induced acute and chronic colitis models. Food Sci Hum Wellness. 2018;7:273–81. https://doi.org/10.1016/j.fshw.2018.10.004.

    Article  Google Scholar 

  43. Saber S, Basuony M, Eldin AS. Telmisartan ameliorates dextran sodium sulfate-induced colitis in rats by modulating NF-ΚB signalling in the context of PPARγ agonistic activity. Arch Biochem Biophys. 2019;671:185–95. https://doi.org/10.1016/j.abb.2019.07.014.

    Article  CAS  PubMed  Google Scholar 

  44. Moschen AR, Adolph TE, Gerner RR, Wieser V, Tilg H. Lipocalin-2: A master mediator of intestinal and metabolic inflammation. Trends Endocrinol Metab. 2017;28:388–97. https://doi.org/10.1016/j.tem.2017.01.003.

    Article  CAS  PubMed  Google Scholar 

  45. Geier MS, Smith CL, Butler RN, Howarth GS. Small-Intestinal manifestations of dextran sulfate sodium consumption in rats and assessment of the effects of lactobacillus fermentum BR11. Dig Dis Sci. 2009;54:1222–8. https://doi.org/10.1007/s10620-008-0495-4.

    Article  CAS  PubMed  Google Scholar 

  46. Tanaka T, Kohno H, Suzuki R, Hata K, Sugie S, Niho N, Sakano K, Takahashi M, Wakabayashi K. Dextran Sodium sulfate strongly promotes colorectal carcinogenesis in ApcMin/+ mice: inflammatory stimuli by dextran sodium sulfate results in development of multiple colonic neoplasms. Int J Cancer. 2006;118:25–34. https://doi.org/10.1002/ijc.21282.

    Article  CAS  PubMed  Google Scholar 

  47. Takahashi S, Kawamura T, Kanda Y, Taniguchi T, Nishizawa T, Iiai T, Hatakeyama K, Abo T. Multipotential acceptance of Peyer’s Patches in the intestine for both thymus-derived T cells and extrathymic T cells in mice. Immunol Cell Biol. 2005;83:504–10. https://doi.org/10.1111/j.1440-1711.2005.01361.x.

    Article  CAS  PubMed  Google Scholar 

  48. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol. 2010;160:1577–9. https://doi.org/10.1111/j.1476-5381.2010.00872.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Johansson MEV, Hansson GC. Preservation of Mucus in Histological Sections, Immunostaining of Mucins in Fixed Tissue, and Localization of Bacteria with FISH. Methods Mol Biol Clifton NJ. 2012;842:229–35. https://doi.org/10.1007/978-1-61779-513-8_13.

    Article  CAS  Google Scholar 

  50. Carrière F, Renou C, Lopez V, de Caro J, Ferrato F, Lengsfeld H, de Caro A, Laugier R, Verger R. The specific activities of human digestive lipases measured from the in vivo and in vitro lipolysis of test meals. Gastroenterology. 2000;119:949–60. https://doi.org/10.1053/gast.2000.18140.

    Article  PubMed  Google Scholar 

  51. Q2B Validation of Analytical Procedures: Methodology (Docket Number FDA-1996-D-0169) Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/q2b-validation-analytical-procedures-methodology. (Accessed on 15 Mar 2022).

  52. Otley A, Loonen H, Parekh N, Corey M, Sherman PM, Griffiths AM. Assessing Activity of pediatric Crohn’s disease: which index to use? Gastroenterology. 1999;116:527–31. https://doi.org/10.1016/S0016-5085(99)70173-3.

    Article  CAS  PubMed  Google Scholar 

  53. Shaoul R, Day AS. An overview of tools to score severity in pediatric inflammatory bowel disease. Front Pediatr. 2021;9:615216. https://doi.org/10.3389/fped.2021.615216.

  54. Tanner JM, Whitehouse RH, Takaishi M. Standards from birth to maturity for height, weight, height velocity, and weight velocity: British children, 1965. I. Arch Dis Child. 1966;41:454–71.

    Article  CAS  PubMed  Google Scholar 

  55. Mähler M, Bristol IJ, Leiter EH, Workman AE, Birkenmeier EH, Elson CO, Sundberg JP. Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. Am J Physiol-Gastrointest Liver Physiol. 1998;27:G544–G551.https://doi.org/10.1152/ajpgi.1998.274.3.G544.

  56. Asad S, Wegler C, Ahl D, Bergström CAS, Phillipson M, Artursson P, Teleki A. Proteomics-informed identification of luminal targets for in situ diagnosis of inflammatory bowel disease. J Pharm Sci. 2021;110:239–50. https://doi.org/10.1016/j.xphs.2020.11.001.

    Article  CAS  PubMed  Google Scholar 

  57. Poritz LS, Garver KI, Green C, Fitzpatrick L, Ruggiero F, Koltun WA. Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis. J Surg Res. 2007;140:12–9. https://doi.org/10.1016/j.jss.2006.07.050.

    Article  CAS  PubMed  Google Scholar 

  58. Magro F, Gionchetti P, Eliakim R, Ardizzone S, Armuzzi A, Barreiro-de Acosta M, Burisch J, Gecse KB, Hart AL, Hindryckx P, et al. Third European evidence-based consensus on diagnosis and management of ulcerative colitis. Part 1: Definitions, Diagnosis, Extra-Intestinal Manifestations, Pregnancy, Cancer Surveillance, Surgery, and Ileo-Anal Pouch Disorders. J Crohns Colitis. 2017;11:649–70.https://doi.org/10.1093/ecco-jcc/jjx008.

  59. Gore RM. Colonic contour changes in chronic ulcerative colitis: reappraisal of some old concepts. AJR Am J Roentgenol. 1992;158:59–61. https://doi.org/10.2214/ajr.158.1.1727359.

    Article  CAS  PubMed  Google Scholar 

  60. Laroui H, Ingersoll SA, Liu HC, Baker MT, Ayyadurai S, Charania MA, Laroui F, Yan Y, Sitaraman SV, Merlin D. Dextran sodium sulfate (DSS) induces colitis in mice by forming nano-lipocomplexes with medium-chain-length fatty acids in the colon. PloS One 2012;7:e32084.https://doi.org/10.1371/journal.pone.0032084.

  61. Chen Y, Guo Y, Gharibani P, Chen J, Selaru FM, Chen JDZ. Transitional changes in gastrointestinal transit and rectal sensitivity from active to recovery of inflammation in a rodent model of colitis. Sci Rep. 2021;11:8284. https://doi.org/10.1038/s41598-021-87814-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Henriksen M, Jahnsen J, Lygren I, Stray N, Sauar J, Vatn MH, Moum B, Group, and the IS. C-Reactive Protein: a predictive factor and marker of inflammation in inflammatory bowel disease. results from a prospective population-based study. Gut. 2008;57:1518–23.https://doi.org/10.1136/gut.2007.146357.

  63. Falvey JD, Hoskin T, Meijer B, Ashcroft A, Walmsley R, Day AS, Gearry RB. Disease activity assessment in IBD: clinical indices and biomarkers fail to predict endoscopic remission. Inflamm Bowel Dis. 2015;21:824–31. https://doi.org/10.1097/MIB.0000000000000341.

    Article  PubMed  Google Scholar 

  64. Ansar W, Ghosh S. C-reactive protein and the biology of disease. Immunol Res. 2013;56:131–42. https://doi.org/10.1007/s12026-013-8384-0.

    Article  CAS  PubMed  Google Scholar 

  65. Lewis JD. The Utility of biomarkers in the diagnosis and therapy of inflammatory bowel disease. Gastroenterology. 2011;140:1817-1826.e2. https://doi.org/10.1053/j.gastro.2010.11.058.

    Article  CAS  PubMed  Google Scholar 

  66. de Beer FC, Baltz ML, Munn EA, Feinstein A, Taylor J, Bruton C, Clamp JR, Pepys MB. Isolation and characterization of C-Reactive protein and serum amyloid P component in the rat. Immunology. 1982;45:55–70.

    PubMed  PubMed Central  Google Scholar 

  67. Padilla ND, Bleeker WK, Lubbers Y, Rigter GMM, van Mierlo GJ, Daha MR, Hack CE. Rat C-reactive protein activates the autologous complement system. Immunology. 2003;109:564–71. https://doi.org/10.1046/j.1365-2567.2003.01681.x.

    Article  CAS  PubMed Central  Google Scholar 

  68. Okada K, Itoh H, Ikemoto M. Circulating S100A8/A9 Is potentially a biomarker that could reflect the severity of experimental colitis in rats. Heliyon. 2020;6:e03470.https://doi.org/10.1016/j.heliyon.2020.e03470.

  69. Nielsen OH, Gionchetti P, Ainsworth M, Vainer B, Campieri M, Borregaard N, Kjeldsen L. Rectal dialysate and fecal concentrations of neutrophil gelatinase-associated lipocalin, interleukin-8, and tumor necrosis factor-α in ulcerative colitis. Am J Gastroenterol. 1999;94:2923–8. https://doi.org/10.1016/S0002-9270(99)00495-5chas.

  70. Le Leu RK, Conlon MA, Bird AR, Clarke JM. Housing experimental rats in solid-based cages with digestible bedding may confound outcomes of nutritional studies. J Sci Food Agric. 2015;95:2155–8. https://doi.org/10.1002/jsfa.6919.

    Article  CAS  PubMed  Google Scholar 

  71. Kodani M, Fukui H, Tomita T, Oshima T, Watari J, Miwa H. Association between gastrointestinal motility and macrophage/mast cell distribution in mice during the healing stage after DSS-induced colitis. Mol Med Rep. 2018;17:8167–72. https://doi.org/10.3892/mmr.2018.8926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. DeNigris SJ, Hamosh M, Kasbekar DK, Lee TC, Hamosh P. Lingual and gastric lipases: species differences in the origin of prepancreatic digestive lipases and in the localization of gastric lipase. Biochim Biophys Acta. 1988;959:38–45. https://doi.org/10.1016/0005-2760(88)90147-6.

    Article  CAS  PubMed  Google Scholar 

  73. Sassene PJ, Michaelsen MH, Mosgaard MD, Jensen MK, Van Den Broek E, Wasan KM, Mu H, Rades T, Müllertz A. In vivo precipitation of poorly soluble drugs from lipid-based drug delivery systems. Mol Pharm. 2016;13:3417–26. https://doi.org/10.1021/acs.molpharmaceut.6b00413.

    Article  CAS  PubMed  Google Scholar 

  74. Anby MU, Nguyen T-H, Yeap YY, Feeney OM, Williams HD, Benameur H, Pouton CW, Porter CJH. An in vitro digestion test that reflects rat intestinal conditions to probe the importance of formulation digestion vs first pass metabolism in danazol bioavailability from lipid based formulations. Mol Pharm. 2014;11:4069–83. https://doi.org/10.1021/mp500197b.

    Article  CAS  PubMed  Google Scholar 

  75. Armand M, Borel P, Pasquier B, Dubois C, Senft M, Andre M, Peyrot J, Salducci J, Lairon D. Physicochemical characteristics of emulsions during fat digestion in human stomach and duodenum. Am J Physiol. 1996;271:G172-183. https://doi.org/10.1152/ajpgi.1996.271.1.G172.

    Article  CAS  PubMed  Google Scholar 

  76. Sassene P, Kleberg K, Williams HD, Bakala-N’Goma J-C, Carrière F, Calderone M, Jannin V, Igonin A, Partheil A, Marchaud D, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 6: effects of varying pancreatin and calcium levels. AAPS J. 2014;16:1344–57.https://doi.org/10.1208/s12248-014-9672-x.

  77. Ward FW, Coates ME. Gastrointestinal PH measurement in rats: influence of the microbial flora, diet and fasting. Lab Anim. 1987;21:216–22. https://doi.org/10.1258/002367787781268693.

    Article  CAS  PubMed  Google Scholar 

  78. Smith HW. Observations on the flora of the alimentary tract of animals and factors affecting its composition. J Pathol Bacteriol. 1965;89:95–122. https://doi.org/10.1002/path.1700890112.

    Article  CAS  PubMed  Google Scholar 

  79. Masaoka Y, Tanaka Y, Kataoka M, Sakuma S, Yamashita S. Site of drug absorption after oral administration: assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract. Eur J Pharm Sci. 2006;29:240–50. https://doi.org/10.1016/j.ejps.2006.06.004.

    Article  CAS  PubMed  Google Scholar 

  80. Dietschy JM. Mechanisms for the intestinal absorption of bile acids. J Lipid Res. 1968;9:297–309.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research is funded by the Danish National Research Foundation (DNRF122), Villum Fonden (Grant No. 9301), Center for intelligent drug delivery and sensing using microcontainers and nanomechanics (IDUN), and Lundbeckfonden (R286-2018–2015).

Author information

Authors and Affiliations

Authors

Contributions

MK conceptualization, investigation, methodology, writing – original draft. MNK conceptualization, investigation, methodology, writing – original draft. RV investigation, methodology, writing—review & editing. PG investigation, methodology, writing—review & editing. JJ methodology, writing—review & editing, supervision, project administration. RB methodology, writing—review & editing, supervision, project administration. TR methodology, writing—review & editing, supervision, project administration. AM methodology, project administration, resources, funding acquisition, writing—review & editing, supervision.

Corresponding author

Correspondence to Anette Müllertz.

Ethics declarations

Ethics approval

All animal studies were performed at the University of Copenhagen under license number 2019–15-0201–00262. All procedures complied with the Danish laws regarding animal experiments, the EU Directive 2010/63/EU, and the ARRIVE guidelines.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mette Klitgaard and Maja Nørgaard Kristensen contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 468 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klitgaard, M., Kristensen, M.N., Venkatasubramanian, R. et al. Assessing acute colitis induced by dextran sulfate sodium in rats and its impact on gastrointestinal fluids. Drug Deliv. and Transl. Res. 13, 1484–1499 (2023). https://doi.org/10.1007/s13346-023-01313-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01313-y

Keywords

Navigation