Skip to main content
Log in

Opioids: A Review of Pharmacokinetics and Pharmacodynamics in Neonates, Infants, and Children

  • Review Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Pain management in the pediatric population is complex for many reasons. Mild pain is usually managed quite well with oral acetaminophen or ibuprofen. Situations involving more severe pain often require the use of an opioid, which may be administered by many different routes, depending on clinical necessity. Acute and chronic disease states, as well as the constantly changing maturational process, produce unique challenges at every level of pediatrics in dosing and management of all medications, especially with regard to high-risk opioids. Although there has been significant progress in the understanding of opioid pharmacokinetics and pharmacodynamics in neonates, infants, children, and adolescents, somewhat limited data exist from which necessary information, concerning the safe and effective use of these agents, may be drawn. The evidence here provided is intended to be helpful in directing the practitioner to patient-specific reasons for preferring one opioid over another. As our knowledge of opioids and their effects has grown, it has become clear that older medications like codeine and meperidine (pethidine) have very limited use in pediatrics. This review provides pharmacokinetic and pharmacodynamic evidence on the currently available opioids: morphine, fentanyl (and derivatives), codeine, meperidine, oxycodone, hydrocodone, hydromorphone, methadone, buprenorphine, butorphanol, nalbuphine, pentazocin, ketobemidone, tramadol, piritramide, naloxone and naltrexone. Morphine, being the most studied opioid analgesic, is the standard against which all others are compared. Pharmacokinetic parameters of morphine that have been found in neonates, i.e., higher volume of distribution, immature metabolic processes that develop at various rates, elimination that is variable based on age and weight, as well as treated and untreated disease processes, are an example of all opioids in the population discussed in this review. Outside the premature and neonatal population, the use of opioids in infants, children, and adolescents quickly begins to resemble the established values found in adults. As such, the concerns (risks) of these medications become comparable to those seen in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anand KJ, Anderson BJ, Holford NH, Hall RW, Young T, Shephard B, et al. Morphine pharmacokinetics and pharmacodynamics in preterm and term neonates: secondary results from the NEOPAIN trial. Br J Anaesth. 2008;101(5):680–9. https://doi.org/10.1093/bja/aen248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ruest S, Anderson A. Management of acute pediatric pain in the emergency department. Curr Opin Pediatr. 2016;28(3):298–304. https://doi.org/10.1097/mop.0000000000000347.

    Article  CAS  PubMed  Google Scholar 

  3. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology−drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;12(349):1157–67.

    Article  Google Scholar 

  4. Hewitt M, Goldman A, Collins GS, Childs M, Hain R. Opioid use in palliative care of children and young people with cancer. J Pediatr. 2008;152(1):39–44. https://doi.org/10.1016/j.jpeds.2007.07.005.

    Article  CAS  PubMed  Google Scholar 

  5. Venkatasubramanian R, Fukuda T, Niu J, Mizuno T, Chidambaran V, Vinks AA, et al. ABCC3 and OCT1 genotypes influence pharmacokinetics of morphine in children. Pharmacogenomics. 2014;15(10):1297–309. https://doi.org/10.2217/pgs.14.99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chaves C, Remiao F, Cisternino S, Decleves X. Opioids and the blood-brain barrier: a dynamic interaction with consequences on drug disposition in brain. Curr Neuropharmacol. 2017;15(8):1156–73. https://doi.org/10.2174/1570159X15666170504095823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang J, Reilly BG, Davis TP, Ronaldson PT. Modulation of opioid transport at the blood-brain barrier by altered ATP-binding cassette (ABC) transporter expression and activity. Pharmaceutics. 2018. https://doi.org/10.3390/pharmaceutics10040192.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brouwer KL, Aleksunes LM, Brandys B, Giacoia GP, Knipp G, Lukacova V, et al. Human ontogeny of drug transporters: review and recommendations of the pediatric transporter working group. Clin Pharmacol Ther. 2015;98(3):266–87. https://doi.org/10.1002/cpt.176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Olkkola KT, Maunuksela EL, Korpela R, Rosenberg PH. Kinetics and dynamics of postoperative intravenous morphine in children. Clin Pharmacol Ther. 1988;44(2):128–36.

    Article  CAS  PubMed  Google Scholar 

  10. Kart T, Christrup LL, Rasmussen M. Recommended use of morphine in neonates, infants and children based on a literature review: part 1–pharmacokinetics. Paediatr Anaesth. 1997;7(1):5–11.

    Article  CAS  PubMed  Google Scholar 

  11. Lynn AM, Nespeca MK, Bratton SL, Shen DD. Intravenous morphine in postoperative infants: intermittent bolus dosing versus targeted continuous infusions. Pain. 2000;88(1):89–95.

    Article  CAS  PubMed  Google Scholar 

  12. Carbajal R, Lenclen R, Jugie M, Paupe A, Barton BA, Anand KJ. Morphine does not provide adequate analgesia for acute procedural pain among preterm neonates. Pediatrics. 2005;115(6):1494–500. https://doi.org/10.1542/peds.2004-1425.

    Article  PubMed  Google Scholar 

  13. Allegaert K, Simons SH, Vanhole C, Tibboel D. Developmental pharmacokinetics of opioids in neonates. J Opioid Manag. 2007;3(1):59–64.

    Article  PubMed  Google Scholar 

  14. Gammal RS, Crews KR, Haidar CE, Hoffman JM, Baker DK, Barker PJ, et al. Pharmacogenetics for safe codeine use in sickle cell disease. Pediatrics. 2016. https://doi.org/10.1542/peds.2015-3479.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Berde CB, Sethna NF. Analgesics for the treatment of pain in children. N Engl J Med. 2002;347(14):1094–103. https://doi.org/10.1056/NEJMra012626.

    Article  CAS  PubMed  Google Scholar 

  16. Lynn AM, Nespeca MK, Opheim KE, Slattery JT. Respiratory effects of intravenous morphine infusions in neonates, infants, and children after cardiac surgery. Anesth Analg. 1993;77(4):695–701.

    Article  CAS  PubMed  Google Scholar 

  17. Eschertzhuber S, Hohlrieder M, Keller C, Oswald E, Kuehbacher G, Innerhofer P. Comparison of high- and low-dose intrathecal morphine for spinal fusion in children. Br J Anaesth. 2008;100(4):538–43. https://doi.org/10.1093/bja/aen025.

    Article  CAS  PubMed  Google Scholar 

  18. Simons SH, Anand KJ. Pain control: opioid dosing, population kinetics and side-effects. Semin Fetal Neonatal Med. 2006;11(4):260–7. https://doi.org/10.1016/j.siny.2006.02.008.

    Article  PubMed  Google Scholar 

  19. Bouwmeester NJ, Hop WC, van Dijk M, Anand KJ, van den Anker JN, Tibboel D. Postoperative pain in the neonate: age-related differences in morphine requirements and metabolism. Intensive Care Med. 2003;29(11):2009–15. https://doi.org/10.1007/s00134-003-1899-4.

    Article  PubMed  Google Scholar 

  20. Cote C, Lerman J, Todres ID. A practice of anesthesia for infants and children. 4th ed. Philadelphia: Saunders; 2009.

    Google Scholar 

  21. Liu T, Lewis T, Gauda E, Gobburu J, Ivaturi V. Mechanistic population pharmacokinetics of morphine in neonates with abstinence syndrome after oral administration of diluted tincture of opium. J Clin Pharmacol. 2016;56(8):1009–18. https://doi.org/10.1002/jcph.696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Velez de Mendizabal N, Jimenez-Mendez R, Cooke E, Montgomery CJ, Dawes J, Rieder MJ, et al. A compartmental analysis for morphine and its metabolites in young children after a single oral dose. Clin Pharmacokinet. 2015;54(10):1083–90. https://doi.org/10.1007/s40262-015-0256-4.

    Article  CAS  PubMed  Google Scholar 

  23. Dawes JM, Cooke EM, Hannam JA, Brand KA, Winton P, Jimenez-Mendez R, et al. Oral morphine dosing predictions based on single dose in healthy children undergoing surgery. Paediatr Anaesth. 2017;27(1):28–36. https://doi.org/10.1111/pan.13020.

    Article  PubMed  Google Scholar 

  24. Hunt A, Joel S, Dick G, Goldman A. Population pharmacokinetics of oral morphine and its glucuronides in children receiving morphine as immediate-release liquid or sustained-release tablets for cancer pain. J Pediatr. 1999;135(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  25. Lundeberg S, Beck O, Olsson GL, Boreus LO. Rectal administration of morphine in children. Pharmacokinetic evaluation after a single-dose. Acta Anaesthesiol Scand. 1996;40(4):445–51.

    Article  CAS  PubMed  Google Scholar 

  26. Gourlay GK, Boas RA. Fatal outcome with use of rectal morphine for postoperative pain control in an infant. BMJ. 1992;304(6829):766–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nichols DG, Yaster M, Lynn AM, Helfaer MA, Deshpande JK, Manson PN, et al. Disposition and respiratory effects of intrathecal morphine in children. Anesthesiology. 1993;79(4):733–8.

    Article  CAS  PubMed  Google Scholar 

  28. Jones SE, Beasley JM, Macfarlane DW, Davis JM, Hall-Davies G. Intrathecal morphine for postoperative pain relief in children. Br J Anaesth. 1984;56(2):137–40.

    Article  CAS  PubMed  Google Scholar 

  29. Pacifici GM. Metabolism and pharmacokinetics of morphine in neonates: a review. Clinics (Sao Paulo). 2016;71(8):474–80. https://doi.org/10.6061/clinics/2016(08)11.

    Article  Google Scholar 

  30. Lugo RA, Kern SE. Clinical pharmacokinetics of morphine. J Pain Palliat Care Pharmacother. 2002;16(4):5–18.

    Article  PubMed  Google Scholar 

  31. Kelly LE, Rieder M, van den Anker J, Malkin B, Ross C, Neely MN, et al. More codeine fatalities after tonsillectomy in North American children. Pediatrics. 2012;129(5):e1343–7. https://doi.org/10.1542/peds.2011-2538.

    Article  PubMed  Google Scholar 

  32. Andrzejowski P, Carroll W. Codeine in paediatrics: pharmacology, prescribing and controversies. Arch Dis Child Educ Pract Ed. 2016;101(3):148–51. https://doi.org/10.1136/archdischild-2014-307286.

    Article  PubMed  Google Scholar 

  33. Pokela ML, Olkkola KT, Koivisto M, Ryhänen P. Pharmacokinetics and pharmacodynamics of intravenous meperidine in neonates and infants. Clin Pharmacol Ther. 1992;52(4):342–9.

    Article  CAS  PubMed  Google Scholar 

  34. Buck ML. Is meperidine the drug that just won’t die? J Pediatr Pharmacol Ther. 2011;16(3):167–9. https://doi.org/10.5863/1551-6776-16.3.167.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mather LE, Meffin PJ. Clinical pharmacokinetics of pethidine. Clin Pharmacokinet. 1978;3(5):352–68. https://doi.org/10.2165/00003088-197803050-00002.

    Article  CAS  PubMed  Google Scholar 

  36. Clark RF, Wei EM, Anderson PO. Meperidine: therapeutic use and toxicity. J Emerg Med. 1995;13(6):797–802.

    Article  CAS  PubMed  Google Scholar 

  37. Lenahan M, Wells M, Scarbecz M. A retrospective study of 248 pediatric oral sedations utilizing the combination of meperidine and hydroxyzine for dental treatment. J Clin Pediatr Dent. 2015;39(5):481–7. https://doi.org/10.17796/1053-4628-39.5.481.

    Article  CAS  PubMed  Google Scholar 

  38. Saneto RP, Fitch JA, Cohen BH. Acute neurotoxicity of meperidine in an infant. Pediatr Neurol. 1996;14(4):339–41.

    Article  CAS  PubMed  Google Scholar 

  39. Bariş S, Karakaya D, Sarihasan B. A dose of 1 mg·kg−1 meperidine causes muscle rigidity in infants? Paediatr Anaesth. 2000;10(6):684.

    Article  PubMed  Google Scholar 

  40. Kyff JV, Rice TL. Meperidine-associated seizures in a child. Clin Pharm. 1990;9(5):337–8.

    CAS  PubMed  Google Scholar 

  41. Health AAoPCoPAoCaF, Task Force on Pain in Infants Ci, and Adolescents. The assessment and management of acute pain in infants, children, and adolescents. Pediatrics. 2001;108(3):793–7.

    Article  Google Scholar 

  42. Kokki H, Rasanen I, Reinikainen M, Suhonen P, Vanamo K, Ojanperä I. Pharmacokinetics of oxycodone after intravenous, buccal, intramuscular and gastric administration in children. Clin Pharmacokinet. 2004;43(9):613–22. https://doi.org/10.2165/00003088-200443090-00004.

    Article  CAS  PubMed  Google Scholar 

  43. Balyan R, Mecoli M, Venkatasubramanian R, Chidambaran V, Kamos N, Clay S, et al. CYP2D6 pharmacogenetic and oxycodone pharmacokinetic association study in pediatric surgical patients. Pharmacogenomics. 2017;18(4):337–48. https://doi.org/10.2217/pgs-2016-0183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Olkkola KT, Hamunen K, Seppälä T, Maunuksela EL. Pharmacokinetics and ventilatory effects of intravenous oxycodone in postoperative children. Br J Clin Pharmacol. 1994;38(1):71–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Leow KP, Smith MT, Watt JA, Williams BE, Cramond T. Comparative oxycodone pharmacokinetics in humans after intravenous, oral, and rectal administration. Ther Drug Monit. 1992;14(6):479–84.

    Article  CAS  PubMed  Google Scholar 

  46. Pöyhiä R, Olkkola KT, Seppälä T, Kalso E. The pharmacokinetics of oxycodone after intravenous injection in adults. Br J Clin Pharmacol. 1991;32(4):516–8.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Takala A, Kaasalainen V, Seppala T, Kalso E, Olkkola KT. Pharmacokinetic comparison of intravenous and intranasal administration of oxycodone. Acta Anaesthesiol Scand. 1997;41(2):309–12.

    Article  CAS  PubMed  Google Scholar 

  48. Pokela ML, Anttila E, Seppälä T, Olkkola KT. Marked variation in oxycodone pharmacokinetics in infants. Paediatr Anaesth. 2005;15(7):560–5. https://doi.org/10.1111/j.1460-9592.2005.01571.x.

    Article  PubMed  Google Scholar 

  49. McLellan RA, Oscarson M, Seidegård J, Evans DA, Ingelman-Sundberg M. Frequent occurrence of CYP2D6 gene duplication in Saudi Arabians. Pharmacogenetics. 1997;7(3):187–91.

    Article  CAS  PubMed  Google Scholar 

  50. Aklillu E, Persson I, Bertilsson L, Johansson I, Rodrigues F, Ingelman-Sundberg M. Frequent distribution of ultrarapid metabolizers of debrisoquine in an ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles. J Pharmacol Exp Ther. 1996;278(1):441–6.

    CAS  PubMed  Google Scholar 

  51. de Leon J, Dinsmore L, Wedlund P. Adverse drug reactions to oxycodone and hydrocodone in CYP2D6 ultrarapid metabolizers. J Clin Psychopharmacol. 2003;23(4):420–1. https://doi.org/10.1097/01.jcp.0000085421.74359.60.

    Article  PubMed  Google Scholar 

  52. Liu W, Dutta S, Kearns G, Awni W, Neville KA. Pharmacokinetics of hydrocodone/acetaminophen combination product in children ages 6–17 with moderate to moderately severe postoperative pain. J Clin Pharmacol. 2015;55(2):204–11. https://doi.org/10.1002/jcph.394.

    Article  CAS  PubMed  Google Scholar 

  53. Sauberan JB, Anderson PO, Lane JR, Rafie S, Nguyen N, Rossi SS, et al. Breast milk hydrocodone and hydromorphone levels in mothers using hydrocodone for postpartum pain. Obstet Gynecol. 2011;117(3):611–7. https://doi.org/10.1097/AOG.0b013e31820ca504.

    Article  CAS  PubMed  Google Scholar 

  54. Yee MM, Josephson C, Hill CE, Harrington R, Castillejo MI, Ramjit R, et al. Cytochrome P450 2D6 polymorphisms and predicted opioid metabolism in African American children with sickle cell disease. J Pediatr Hematol Oncol. 2013;35(7):e301–5. https://doi.org/10.1097/MPH.0b013e31828e52d2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pacifici GM. Clinical pharmacology of fentanyl in preterm infants. A review. Pediatr Neonatol. 2015;56(3):143–8. https://doi.org/10.1016/j.pedneo.2014.06.002.

    Article  PubMed  Google Scholar 

  56. Katz R, Kelly HW. Pharmacokinetics of continuous infusions of fentanyl in critically ill children. Crit Care Med. 1993;21(7):995–1000.

    Article  CAS  PubMed  Google Scholar 

  57. Arnold JH, Truog RD, Scavone JM, Fenton T. Changes in the pharmacodynamic response to fentanyl in neonates during continuous infusion. J Pediatr. 1991;119(4):639–43.

    Article  CAS  PubMed  Google Scholar 

  58. Vaughns JD, Ziesenitz VC, Williams EF, Mushtaq A, Bachmann R, Skopp G, et al. Use of fentanyl in adolescents with clinically severe obesity undergoing bariatric surgery: a pilot study. Paediatr Drugs. 2017;19(3):251–7. https://doi.org/10.1007/s40272-017-0216-6.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Streisand JB, Varvel JR, Stanski DR, Le Maire L, Ashburn MA, Hague BI, et al. Absorption and bioavailability of oral transmucosal fentanyl citrate. Anesthesiology. 1991;75(2):223–9.

    Article  CAS  PubMed  Google Scholar 

  60. Wheeler M, Birmingham PK, Dsida RM, Wang Z, Coté CJ, Avram MJ. Uptake pharmacokinetics of the Fentanyl Oralet in children scheduled for central venous access removal: implications for the timing of initiating painful procedures. Paediatr Anaesth. 2002;12(7):594–9.

    Article  PubMed  Google Scholar 

  61. Wheeler M, Birmingham PK, Lugo RA, Heffner CL, Coté CJ. The pharmacokinetics of the intravenous formulation of fentanyl citrate administered orally in children undergoing general anesthesia. Anesth Analg. 2004;99(5):1347–51. https://doi.org/10.1213/01.ane.0000132777.00967.a3.

    Article  CAS  PubMed  Google Scholar 

  62. Furyk JS, Grabowski WJ, Black LH. Nebulized fentanyl versus intravenous morphine in children with suspected limb fractures in the emergency department: a randomized controlled trial. Emerg Med Australas. 2009;21(3):203–9. https://doi.org/10.1111/j.1742-6723.2009.01183.x.

    Article  PubMed  Google Scholar 

  63. Alexander-Williams JM, Rowbotham DJ. Novel routes of opioid administration. Br J Anaesth. 1998;81(1):3–7.

    Article  CAS  PubMed  Google Scholar 

  64. Miner JR, Kletti C, Herold M, Hubbard D, Biros MH. Randomized clinical trial of nebulized fentanyl citrate versus i.v. fentanyl citrate in children presenting to the emergency department with acute pain. Acad Emerg Med. 2007;14(10):895–8. https://doi.org/10.1197/j.aem.2007.06.036.

    Article  PubMed  Google Scholar 

  65. Zernikow B, Michel E, Anderson B. Transdermal fentanyl in childhood and adolescence: a comprehensive literature review. J Pain. 2007;8(3):187–207. https://doi.org/10.1016/j.jpain.2006.11.008.

    Article  CAS  PubMed  Google Scholar 

  66. Gupta SK, Southam M, Gale R, Hwang SS. System functionality and physicochemical model of fentanyl transdermal system. J Pain Symptom Manag. 1992;7(3 Suppl):S17–26.

    Article  CAS  Google Scholar 

  67. Christensen ML, Wang WC, Harris S, Eades SK, Wilimas JA. Transdermal fentanyl administration in children and adolescents with sickle cell pain crisis. J Pediatr Hematol Oncol. 1996;18(4):372–6.

    Article  CAS  PubMed  Google Scholar 

  68. Paut O, Camboulives J, Viard L, Lemoing JP, Levron JC. Pharmacokinetics of transdermal fentanyl in the peri-operative period in young children. Anaesthesia. 2000;55(12):1202–7.

    Article  CAS  PubMed  Google Scholar 

  69. Finkel JC, Finley A, Greco C, Weisman SJ, Zeltzer L. Transdermal fentanyl in the management of children with chronic severe pain: results from an international study. Cancer. 2005;104(12):2847–57. https://doi.org/10.1002/cncr.21497.

    Article  CAS  PubMed  Google Scholar 

  70. Anand KJ, Maze M. Fetuses, fentanyl, and the stress response: signals from the beginnings of pain? Anesthesiology. 2001;95(4):823–5.

    Article  CAS  PubMed  Google Scholar 

  71. Cramton RE, Gruchala NE. Managing procedural pain in pediatric patients. Curr Opin Pediatr. 2012;24(4):530–8. https://doi.org/10.1097/MOP.0b013e328355b2c5.

    Article  PubMed  Google Scholar 

  72. Zeltzer LK, Altman A, Cohen D, LeBaron S, Munuksela EL, Schechter NL. American Academy of Pediatrics Report of the Subcommittee on the management of pain associated with procedures in children with cancer. Pediatrics. 1990;86(5 Pt 2):826–31.

    CAS  PubMed  Google Scholar 

  73. Borland M, Jacobs I, King B, O’Brien D. A randomized controlled trial comparing intranasal fentanyl to intravenous morphine for managing acute pain in children in the emergency department. Ann Emerg Med. 2007;49(3):335–40. https://doi.org/10.1016/j.annemergmed.2006.06.016.

    Article  PubMed  Google Scholar 

  74. Herd D, Borland M. Intranasal fentanyl paediatric clinical practice guidelines. Emerg Med Australas. 2009;21(4):335. https://doi.org/10.1111/j.1742-6723.2009.01207.x.

    Article  PubMed  Google Scholar 

  75. Kornick CA, Santiago-Palma J, Khojainova N, Primavera LH, Payne R, Manfredi PL. A safe and effective method for converting cancer patients from intravenous to transdermal fentanyl. Cancer. 2001;92(12):3056–61.

    Article  CAS  PubMed  Google Scholar 

  76. Marlow N, Weindling AM, Van Peer A, Heykants J. Alfentanil pharmacokinetics in preterm infants. Arch Dis Child. 1990;65(4 Spec No):349–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Roure P, Jean N, Leclerc AC, Cabanel N, Levron JC, Duvaldestin P. Pharmacokinetics of alfentanil in children undergoing surgery. Br J Anaesth. 1987;59(11):1437–40.

    Article  CAS  PubMed  Google Scholar 

  78. Lundeberg S, Roelofse JA. Aspects of pharmacokinetics and pharmacodynamics of sufentanil in pediatric practice. Paediatr Anaesth. 2011;21(3):274–9. https://doi.org/10.1111/j.1460-9592.2010.03411.x.

    Article  PubMed  Google Scholar 

  79. Davis PJ, Stiller RL, Cook DR, Brandom BW, Davin-Robinson KA. Pharmacokinetics of sufentanil in adolescent patients with chronic renal failure. Anesth Analg. 1988;67(3):268–71.

    Article  CAS  PubMed  Google Scholar 

  80. Greeley WJ, de Bruijn NP, Davis DP. Sufentanil pharmacokinetics in pediatric cardiovascular patients. Anesth Analg. 1987;66(11):1067–72.

    Article  CAS  PubMed  Google Scholar 

  81. Bartkowska-Śniatkowska A, Bienert A, Wiczling P, Rosada-Kurasińska J, Zielińska M, Warzybok J, et al. Pharmacokinetics of sufentanil during long-term infusion in critically ill pediatric patients. J Clin Pharmacol. 2016;56(1):109–15. https://doi.org/10.1002/jcph.577.

    Article  CAS  PubMed  Google Scholar 

  82. Haynes G, Brahen NH, Hill HF. Plasma sufentanil concentration after intranasal administration to paediatric outpatients. Can J Anaesth. 1993;40(3):286. https://doi.org/10.1007/BF03037044.

    Article  CAS  PubMed  Google Scholar 

  83. Marsh DF, Hodkinson B. Remifentanil in paediatric anaesthetic practice. Anaesthesia. 2009;64(3):301–8. https://doi.org/10.1111/j.1365-2044.2008.05731.x.

    Article  CAS  PubMed  Google Scholar 

  84. Ross AK, Davis PJ, Dear Gd GL, Ginsberg B, McGowan FX, Stiller RD, et al. Pharmacokinetics of remifentanil in anesthetized pediatric patients undergoing elective surgery or diagnostic procedures. Anesth Analg. 2001;93(6):1393–401.

    Article  CAS  PubMed  Google Scholar 

  85. Standing JF, Hammer GB, Sam WJ, Drover DR. Pharmacokinetic-pharmacodynamic modeling of the hypotensive effect of remifentanil in infants undergoing cranioplasty. Paediatr Anaesth. 2010;20(1):7–18. https://doi.org/10.1111/j.1460-9592.2009.03174.x.

    Article  PubMed  Google Scholar 

  86. Lugo RA, Satterfield KL, Kern SE. Pharmacokinetics of methadone. J Pain Palliat Care Pharmacother. 2005;19(4):13–24.

    Article  PubMed  Google Scholar 

  87. Dale O, Sheffels P, Kharasch ED. Bioavailabilities of rectal and oral methadone in healthy subjects. Br J Clin Pharmacol. 2004;58(2):156–62. https://doi.org/10.1111/j.1365-2125.2004.02116.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ward RM, Drover DR, Hammer GB, Stemland CJ, Kern S, Tristani-Firouzi M, et al. The pharmacokinetics of methadone and its metabolites in neonates, infants, and children. Paediatr Anaesth. 2014;24(6):591–601. https://doi.org/10.1111/pan.12385.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wiles JR, Isemann B, Mizuno T, Tabangin ME, Ward LP, Akinbi H, et al. Pharmacokinetics of oral methadone in the treatment of neonatal abstinence syndrome: a pilot study. J Pediatr. 2015;167(6):121420.e3. https://doi.org/10.1016/j.jpeds.2015.08.032.

    Article  CAS  Google Scholar 

  90. Grassin-Delyle S, Buenestado A, Naline E, Faisy C, Blouquit-Laye S, Couderc LJ, et al. Intranasal drug delivery: an efficient and non-invasive route for systemic administration: focus on opioids. Pharmacol Ther. 2012;134(3):366–79. https://doi.org/10.1016/j.pharmthera.2012.03.003.

    Article  CAS  PubMed  Google Scholar 

  91. Eap CB, Buclin T, Baumann P. Interindividual variability of the clinical pharmacokinetics of methadone: implications for the treatment of opioid dependence. Clin Pharmacokinet. 2002;41(14):1153–93. https://doi.org/10.2165/00003088-200241140-00003.

    Article  CAS  PubMed  Google Scholar 

  92. Berde CB, Beyer JE, Bournaki MC, Levin CR, Sethna NF. Comparison of morphine and methadone for prevention of postoperative pain in 3- to 7-year-old children. J Pediatr. 1991;119(1 Pt 1):136–41.

    Article  CAS  PubMed  Google Scholar 

  93. Sharma A, Tallchief D, Blood J, Kim T, London A, Kharasch ED. Perioperative pharmacokinetics of methadone in adolescents. Anesthesiology. 2011;115(6):1153–61. https://doi.org/10.1097/ALN.0b013e318238fec5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brown MS, Hayes MJ, Thornton LM. Methadone versus morphine for treatment of neonatal abstinence syndrome: a prospective randomized clinical trial. J Perinatol. 2015;35(4):278–83. https://doi.org/10.1038/jp.2014.194.

    Article  CAS  PubMed  Google Scholar 

  95. Anand KJ, Arnold JH. Opioid tolerance and dependence in infants and children. Crit Care Med. 1994;22(2):334–42.

    Article  CAS  PubMed  Google Scholar 

  96. Galinkin J, Koh JL, Drugs Co, Medicine SOAaP, Pediatrics AAo. Recognition and management of iatrogenically induced opioid dependence and withdrawal in children. Pediatrics. 2014;133(1):152–5. https://doi.org/10.1542/peds.2013-3398.

    Article  PubMed  Google Scholar 

  97. Elkader A, Sproule B. Buprenorphine: clinical pharmacokinetics in the treatment of opioid dependence. Clin Pharmacokinet. 2005;44(7):661–80. https://doi.org/10.2165/00003088-200544070-00001.

    Article  CAS  PubMed  Google Scholar 

  98. Barrett DA, Simpson J, Rutter N, Kurihara-Bergstrom T, Shaw PN, Davis SS. The pharmacokinetics and physiological effects of buprenorphine infusion in premature neonates. Br J Clin Pharmacol. 1993;36(3):215–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ng CM, Dombrowsky E, Lin H, Erlich ME, Moody DE, Barrett JS, et al. Population pharmacokinetic model of sublingual buprenorphine in neonatal abstinence syndrome. Pharmacotherapy. 2015;35(7):670–80. https://doi.org/10.1002/phar.1610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Moore JN, Gastonguay MR, Ng CM, Adeniyi-Jones SC, Moody DE, Fang WB, et al. The pharmacokinetics and pharmacodynamics of buprenorphine in neonatal abstinence syndrome. Clin Pharmacol Ther. 2018;103(6):1029–37. https://doi.org/10.1002/cpt.1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Stauble ME, Moore AW, Langman LJ, Boswell MV, Baumgartner R, McGee S, et al. Hydrocodone in postoperative personalized pain management: pro-drug or drug? Clin Chim Acta. 2014;429:26–9. https://doi.org/10.1016/j.cca.2013.11.015.

    Article  CAS  PubMed  Google Scholar 

  102. Kuhlman JJ Jr, Levine B, Johnson RE, Fudala PJ, Cone EJ. Relationship of plasma buprenorphine and norbuprenorphine to withdrawal symptoms during dose induction, maintenance and withdrawal from sublingual buprenorphine. Addiction. 1998;93(4):549–59.

    Article  PubMed  Google Scholar 

  103. Kraft WK, Adeniyi-Jones SC, Ehrlich ME. Buprenorphine for the neonatal abstinence syndrome. N Engl J Med. 2017;377(10):997–8. https://doi.org/10.1056/NEJMc1709121.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Maunuksela EL, Korpela R, Olkkola KT. Comparison of buprenorphine with morphine in the treatment of postoperative pain in children. Anesth Analg. 1988;67(3):233–9.

    Article  CAS  PubMed  Google Scholar 

  105. Kampman K, Jarvis M. American Society of Addiction Medicine (ASAM) national practice guideline for the use of medications in the treatment of addiction involving opioid use. J Addict Med. 2015;9(5):358–67. https://doi.org/10.1097/ADM.0000000000000166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bressolle F, Khier S, Rochette A, Kinowski JM, Dadure C, Capdevila X. Population pharmacokinetics of nalbuphine after surgery in children. Br J Anaesth. 2011;106(4):558–65. https://doi.org/10.1093/bja/aer001.

    Article  CAS  PubMed  Google Scholar 

  107. Jaillon P, Gardin ME, Lecocq B, Richard MO, Meignan S, Blondel Y, et al. Pharmacokinetics of nalbuphine in infants, young healthy volunteers, and elderly patients. Clin Pharmacol Ther. 1989;46(2):226–33.

    Article  CAS  PubMed  Google Scholar 

  108. Hamunen K, Olkkola KT, Seppälä T, Maunuksela EL. Pharmacokinetics and pharmacodynamics of pentazocine in children. Pharmacol Toxicol. 1993;73(2):120–3.

    Article  CAS  PubMed  Google Scholar 

  109. Davis GA, Rudy AC, Archer SM, Wermeling DP. Bioavailability of intranasal butorphanol administered from a single-dose sprayer. Am J Health Syst Pharm. 2005;62(1):48–53.

    Article  CAS  PubMed  Google Scholar 

  110. Davis GA, Rudy AC, Archer SM, Wermeling DP. Pharmacokinetics of butorphanol tartrate administered from single-dose intranasal sprayer. Am J Health Syst Pharm. 2004;61(3):261–6.

    Article  CAS  PubMed  Google Scholar 

  111. Bozkurt P. Use of tramadol in children. Paediatr Anaesth. 2005;15(12):1041–7. https://doi.org/10.1111/j.1460-9592.2005.01738.x.

    Article  PubMed  Google Scholar 

  112. Allegaert K, Anderson BJ, Verbesselt R, Debeer A, de Hoon J, Devlieger H, et al. Tramadol disposition in the very young: an attempt to assess in vivo cytochrome P-450 2D6 activity. Br J Anaesth. 2005;95(2):231–9. https://doi.org/10.1093/bja/aei170.

    Article  CAS  PubMed  Google Scholar 

  113. Allegaert K, Van den Anker JN, Verbesselt R, de Hoon J, Vanhole C, Tibboel D, et al. O-demethylation of tramadol in the first months of life. Eur J Clin Pharmacol. 2005;61(11):837–42. https://doi.org/10.1007/s00228-005-0045-3.

    Article  CAS  PubMed  Google Scholar 

  114. Payne KA, Roelofse JA, Shipton EA. Pharmacokinetics of oral tramadol drops for postoperative pain relief in children aged 4 to 7 years–a pilot study. Anesth Prog. 2002;49(4):109–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Garrido MJ, Habre W, Rombout F, Troconiz IF. Population pharmacokinetic/pharmacodynamic modelling of the analgesic effects of tramadol in pediatrics. Pharm Res. 2006;23(9):2014–23. https://doi.org/10.1007/s11095-006-9049-7.

    Article  CAS  PubMed  Google Scholar 

  116. Vandenbossche J, Richards H, Solanki B, Van Peer A. Single- and multiple-dose pharmacokinetic studies of tramadol immediate-release tablets in children and adolescents. Clin Pharmacol Drug Dev. 2015;4(3):184–92. https://doi.org/10.1002/cpdd.169.

    Article  CAS  PubMed  Google Scholar 

  117. Zwaveling J, Bubbers S, van Meurs AH, Schoemaker RC, van Heel IR, Vermeij P, et al. Pharmacokinetics of rectal tramadol in postoperative paediatric patients. Br J Anaesth. 2004;93(2):224–7. https://doi.org/10.1093/bja/aeh178.

    Article  CAS  PubMed  Google Scholar 

  118. United States Food & Drug Administration. FDA Drug Safety Communication. https://www.fda.gov/Drugs/DrugSafety/ucm549679.htm. Accessed 02 Jan 2019

  119. Orliaguet G, Hamza J, Couloigner V, Denoyelle F, Loriot MA, Broly F, et al. A case of respiratory depression in a child with ultrarapid CYP2D6 metabolism after tramadol. Pediatrics. 2015;135(3):e753–5. https://doi.org/10.1542/peds.2014-2673.

    Article  PubMed  Google Scholar 

  120. Vittinghoff M, Lönnqvist PA, Mossetti V, Heschl S, Simic D, Colovic V, et al. Postoperative pain management in children: guidance from the pain committee of the European Society for Paediatric Anaesthesiology (ESPA Pain Management Ladder Initiative). Paediatr Anaesth. 2018;28(6):493–506. https://doi.org/10.1111/pan.13373.

    Article  PubMed  Google Scholar 

  121. Lundeberg S, Stephanson N, Stiller CO, Eksborg S. Pharmacokinetics after a single intravenous dose of the opioid ketobemidone in neonates. Acta Anaesthesiol Scand. 2012;56(8):1026–31. https://doi.org/10.1111/j.1399-6576.2012.02726.x.

    Article  CAS  PubMed  Google Scholar 

  122. Lundeberg S, Stephanson N, Lafolie P, Olsson GL, Stiller CO, Eksborg S. Pharmacokinetics after an intravenous single dose of the opioid ketobemidone in children. Acta Anaesthesiol Scand. 2010;54(4):435–41. https://doi.org/10.1111/j.1399-6576.2009.02135.x.

    Article  CAS  PubMed  Google Scholar 

  123. Yasar U, Annas A, Svensson JO, Lazorova L, Artursson P, Al-Shurbaji A. Ketobemidone is a substrate for cytochrome P4502C9 and 3A4, but not for P-glycoprotein. Xenobiotica. 2005;35(8):785–96. https://doi.org/10.1080/00498250500183181.

    Article  CAS  PubMed  Google Scholar 

  124. Müller C, Kremer W, Harlfinger S, Doroshyenko O, Jetter A, Hering F, et al. Pharmacokinetics of piritramide in newborns, infants and young children in intensive care units. Eur J Pediatr. 2006;165(4):229–39. https://doi.org/10.1007/s00431-005-0021-z.

    Article  CAS  PubMed  Google Scholar 

  125. Moreland TA, Brice JE, Walker CH, Parija AC. Naloxone pharmacokinetics in the newborn. Br J Clin Pharmacol. 1980;9(6):609–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Weinstein SH, Pfeffer M, Schor JM, Indindoli L, Mintz M. Metabolites of naloxone in human urine. J Pharm Sci. 1971;60(10):1567–8.

    Article  CAS  PubMed  Google Scholar 

  127. Kaleo Inc. EVZIO—naloxone hydrochloride injection. https://dailymed.nlm.nih.gov/dailymed/fda/fdaDrugXsl.cfm?setid=5fbe8d17-a72f-406d-a736-48e61620f9d8&type=display. Accessed 02 Jan 2019.

  128. Gonzalez JP, Brogden RN. Naltrexone. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in the management of opioid dependence. Drugs. 1988;35(3):192–213. https://doi.org/10.2165/00003495-198835030-00002.

    Article  CAS  PubMed  Google Scholar 

  129. Dunbar JL, Turncliff RZ, Dong Q, Silverman BL, Ehrich EW, Lasseter KC. Single- and multiple-dose pharmacokinetics of long-acting injectable naltrexone. Alcohol Clin Exp Res. 2006;30(3):480–90. https://doi.org/10.1111/j.1530-0277.2006.00052.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

James C. Thigpen declares that no source of funding was used to prepare this article. Brian L. Odle declares that no source of funding was used to prepare this article. Sam Harirforoosh declares that no source of funding was used to prepare this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Harirforoosh.

Ethics declarations

Conflict of interest

James C. Thigpen declares no conflicts of interest. Brian L. Odle declares no conflicts of interest. Sam Harirforoosh declares no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thigpen, J.C., Odle, B.L. & Harirforoosh, S. Opioids: A Review of Pharmacokinetics and Pharmacodynamics in Neonates, Infants, and Children. Eur J Drug Metab Pharmacokinet 44, 591–609 (2019). https://doi.org/10.1007/s13318-019-00552-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-019-00552-0

Navigation