Skip to main content
Log in

The role of microRNA-196a in tumorigenesis, tumor progression, and prognosis

  • Review
  • Published:
Tumor Biology

Abstract

MicroRNAs are a large group of non-coding RNAs that have emerged as regulators of various biological processes, especially carcinogenesis and cancer progression. Recent evidence has shown that microRNA-196a (miR-196a) is upregulated in most types of tumors and involved in multiple biological processes via translational inhibition and mRNA cleavage, such as cell proliferation, migration, and invasion, mostly functioning as an oncogene. Dysregulation of miR-196a promotes oncogenesis and tumor progression. In this review, we summarize the upstream regulators, target genes, signaling pathways, and single nucleotide polymorphisms of miR-196a, which collectively affect cell proliferation, migration, and invasion. In addition, we review the clinical outcomes and significance of miR-196a. miR-196a may serve as a novel biomarker or target for diagnosis, prognosis, and therapy in several human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nature Reviews Genetics. 2009;10:155–9.

    Article  CAS  PubMed  Google Scholar 

  2. Zheng G, Xiong Y, Xu W, Wang Y, Chen F, Wang Z, Yan Z. A two-microRNA signature as a potential biomarker for early gastric cancer. Oncol Lett. 2014;7:679–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hong TH, Park IY. MicroRNA expression profiling of diagnostic needle aspirates from surgical pancreatic cancer specimens. Annals of surgical treatment and research. 2014;87:290–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Slaby O, Srovnal J, Radova L, Gregar J, Juracek J, Luzna P, Svoboda M, Hajduch M, Ehrmann J. Dynamic changes in microRNA expression profiles reflect progression of Barrett’s esophagus to esophageal adenocarcinoma. Carcinogenesis. 2015;36:521–7.

    Article  CAS  PubMed  Google Scholar 

  5. Ge J, Chen Z, Li R, Lu T, Xiao G. Upregulation of microRNA-196a and microRNA-196b cooperatively correlate with aggressive progression and unfavorable prognosis in patients with colorectal cancer. Cancer Cell Int. 2014;14:128.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu M, Du Y, Gao J, Liu J, Kong X, Gong Y, Li Z, Wu H, Chen H. Aberrant expression miR-196a is associated with abnormal apoptosis, invasion, and proliferation of pancreatic cancer cells. Pancreas. 2013;42:1169–81.

    Article  PubMed  Google Scholar 

  7. Liu XH, Lu KH, Wang KM, Sun M, Zhang EB, Yang JS, Yin DD, Liu ZL, Zhou J, Liu ZJ, De W, Wang ZX. MicroRNA-196a promotes non-small cell lung cancer cell proliferation and invasion through targeting HOXA5. BMC Cancer. 2012a;12:348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang F, Tang J, Zhuang X, Zhuang Y, Cheng W, Chen W, Yao H, Zhang S. MiR-196a promotes pancreatic cancer progression by targeting nuclear factor kappa-B-inhibitor alpha. PLoS One. 2014;9:e87897.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hou T, Ou J, Zhao X, Huang X, Huang Y, Zhang Y. MicroRNA-196a promotes cervical cancer proliferation through the regulation of FOXO1 and p27Kip1. Br J Cancer. 2014;110:1260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Karsy M, Arslan E, Moy F. Current progress on understanding microRNAs in glioblastoma multiforme. Genes & cancer. 2012;3:3–15.

    Article  Google Scholar 

  11. Steele CW, Oien KA, McKay CJ, Jamieson NB. Clinical potential of microRNAs in pancreatic ductal adenocarcinoma. Pancreas. 2011;40:1165–71.

    Article  CAS  PubMed  Google Scholar 

  12. Du M, Lu D, Wang Q, Chu H, Tong N, Pan X, Qin C, Yin C, Wang M, Zhang Z. Genetic variations in microRNAs and the risk and survival of renal cell cancer. Carcinogenesis. 2014a;35:1629–35.

    Article  CAS  PubMed  Google Scholar 

  13. Hoffman AE, Zheng T, Yi C, Leaderer D, Weidhaas J, Slack F, Zhang Y, Paranjape T, Zhu Y. MicroRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res. 2009;69:5970–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsai KW, Liao YL, Wu CW, Hu LY, Li SC, Chan WC, Ho MR, Lai CH, Kao HW, Fang WL, Huang KH, Lin WC. Aberrant expression of miR-196a in gastric cancers and correlation with recurrence. Genes, chromosomes & cancer. 2012;51:394–401.

    Article  CAS  Google Scholar 

  15. Ahmed FE, Ahmed NC, Vos PW, Bonnerup C, Atkins JN, Casey M, Nuovo GJ, Naziri W, Wiley JE, Mota H, Allison RR. Diagnostic microRNA markers to screen for sporadic human colon cancer in stool: I. Proof of principle. Cancer genomics & proteomics. 2013;10:93–113.

    CAS  Google Scholar 

  16. Guan Y, Mizoguchi M, Yoshimoto K, Hata N, Shono T, Suzuki SO, Araki Y, Kuga D, Nakamizo A, Amano T, Ma X, Hayashi K, Sasaki T. MiRNA-196 is upregulated in glioblastoma but not in anaplastic astrocytoma and has prognostic significance. Clinical cancer research: an official journal of the American Association for Cancer Research. 2010;16:4289–97.

    Article  CAS  Google Scholar 

  17. Maru DM, Singh RR, Hannah C, Albarracin CT, Li YX, Abraham R, Romans AM, Yao H, Luthra MG, Anandasabapathy S, Swisher SG, Hofstetter WL, Rashid A, Luthra R. MicroRNA-196a is a potential marker of progression during Barrett’s metaplasia-dysplasia-invasive adenocarcinoma sequence in esophagus. Am J Pathol. 2009;174:1940–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Han Q, Zhou C, Liu F, Xu G, Zheng R, Zhang X. MicroRNA-196a post-transcriptionally upregulates the UBE2C proto-oncogene and promotes cell proliferation in breast cancer. Oncol Rep. 2015;34:877–83.

    CAS  PubMed  Google Scholar 

  19. Hao YX, Wang JP, Zhao LF. Associations between three common microRNA polymorphisms and hepatocellular carcinoma risk in Chinese. Asian Pacific journal of cancer prevention: APJCP. 2014;14:6601–4.

    Article  PubMed  Google Scholar 

  20. Zhang C, Yao C, Li H, Wang G, He X. Combined elevation of microRNA-196a and microRNA-196b in sera predicts unfavorable prognosis in patients with osteosarcomas. Int J Mol Sci. 2014;15:6544–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  22. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN. The nuclear RNase III drosha initiates microRNA processing. Nature. 2003;425:415–9.

    Article  CAS  PubMed  Google Scholar 

  23. Yang JS, Lai EC. Dicer-independent, Ago2-mediated microRNA biogenesis in vertebrates. Cell cycle (Georgetown, Tex). 2010;9:4455–60.

    Article  CAS  Google Scholar 

  24. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human risc couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123:631–40.

    Article  CAS  PubMed  Google Scholar 

  25. Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science (New York, NY). 2004;304:594–6.

    Article  CAS  Google Scholar 

  26. Zeller KI, Zhao X, Lee CW, Chiu KP, Yao F, Yustein JT, Ooi HS, Orlov YL, Shahab A, Yong HC, Fu Y, Weng Z, Kuznetsov VA, Sung WK, Ruan Y, Dang CV, Wei CL. Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci U S A. 2006;103:17834–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jin K, Park S, Teo WW, Korangath P, Cho SS, Yoshida T, Gyorffy B, Goswami CP, Nakshatri H, Cruz LA, Zhou W, Ji H, Su Y, Ekram M, Wu Z, Zhu T, Polyak K, Sukumar S. HOXb7 is an ERalpha cofactor in the activation of HER2 and multiple er target genes leading to endocrine resistance. Cancer discovery. 2015;5:944–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jin K, Sukumar S. A pivotal role for HOXB7 protein in endocrine resistant breast cancer. Oncoscience. 2015;2:917–9.

    PubMed  PubMed Central  Google Scholar 

  29. Bloom J, Cross FR. Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol. 2007;8:149–60.

    Article  CAS  PubMed  Google Scholar 

  30. Pagliuca FW, Collins MO, Choudhary JS. Coordinating cell cycle progression via cyclin specificity. Cell cycle (Georgetown, Tex). 2011;10:4195–6.

    Article  CAS  Google Scholar 

  31. Banyai G, Baidi F, Coudreuse D, Szilagyi Z. Cdk1 activity acts as a quantitative platform for coordinating cell cycle progression with periodic transcription. Nat Commun. 2016;7:11161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Matus DQ, Lohmer LL, Kelley LC, Schindler AJ, Kohrman AQ, Barkoulas M, Zhang W, Chi Q, Sherwood DR. Invasive cell fate requires G1 cell-cycle arrest and histone deacetylase-mediated changes in gene expression. Dev Cell. 2015;35:162–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun M, Liu XH, Li JH, Yang JS, Zhang EB, Yin DD, Liu ZL, Zhou J, Ding Y, Li SQ, Wang ZX, Cao XF, De W. MiR-196a is upregulated in gastric cancer and promotes cell proliferation by downregulating p27(kip1). Mol Cancer Ther. 2012;11:842–52.

    Article  CAS  PubMed  Google Scholar 

  34. Foronda D, de Navas LF, Garaulet DL, Sanchez-Herrero E. Function and specificity of Hox genes. The International journal of developmental biology. 2009;53:1404–19.

    Article  PubMed  Google Scholar 

  35. Bhatlekar S, Fields JZ, Boman BM. Hox genes and their role in the development of human cancers. Journal of molecular medicine (Berlin, Germany). 2014;92:811–23.

    Article  CAS  Google Scholar 

  36. Raman V, Martensen SA, Reisman D, Evron E, Odenwald WF, Jaffee E, Marks J, Sukumar S. Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature. 2000;405:974–8.

    Article  CAS  PubMed  Google Scholar 

  37. Bredel M, Scholtens DM, Yadav AK, Alvarez AA, Renfrow JJ, Chandler JP, IL Y, Carro MS, Dai F, Tagge MJ, Ferrarese R, Bredel C, Phillips HS, Lukac PJ, Robe PA, Weyerbrock A, Vogel H, Dubner S, Mobley B, He X, Scheck AC, Sikic BI, Aldape KD, Chakravarti A, GRT H. NFKBIA deletion in glioblastomas. N Engl J Med. 2011;364:627–37.

    Article  CAS  PubMed  Google Scholar 

  38. Lin CW, Hsieh YS, Hsin CH, CW S, Lin CH, Wei LH, Yang SF, Chien MH. Effects of NFKB1 and NFKBIA gene polymorphisms on susceptibility to environmental factors and the clinicopathologic development of oral cancer. PLoS One. 2012;7:e35078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang G, Han D, Chen X, Zhang D, Wang L, Shi C, Zhang W, Li C, Chen X, Liu H, Zhang D, Kang J, Peng F, Liu Z, Qi J, Gao X, Ai J, Shi C, Zhao S. MiR-196a exerts its oncogenic effect in glioblastoma multiforme by inhibition of IkappaBalpha both in vitro and in vivo. Neuro-Oncology. 2014;16:652–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kousteni S. FoxO1: a molecule for all seasons. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research. 2011;26:912–7.

    Article  CAS  Google Scholar 

  41. Zhang J, Zheng F, Yu G, Yin Y, Lu Q. MiR-196a targets netrin 4 and regulates cell proliferation and migration of cervical cancer cells. Biochem Biophys Res Commun. 2013;440:582–8.

    Article  CAS  PubMed  Google Scholar 

  42. Luthra R, Singh RR, Luthra MG, Li YX, Hannah C, Romans AM, Barkoh BA, Chen SS, Ensor J, Maru DM, Broaddus RR, Rashid A, Albarracin CT. MicroRNA-196a targets annexin a1: a microRNA-mediated mechanism of annexin A1 downregulation in cancers. Oncogene. 2008;27:6667–78.

    Article  CAS  PubMed  Google Scholar 

  43. Suh YE, Raulf N, Gaken J, Lawler K, Urbano TG, Bullenkamp J, Gobeil S, Huot J, Odell E, Tavassoli M. MicroRNA-196a promotes an oncogenic effect in head and neck cancer cells by suppressing annexin A1 and enhancing radioresistance. International journal of cancer Journal international du cancer. 2015;137:1021–34.

    Article  CAS  PubMed  Google Scholar 

  44. Tsai MM, Wang CS, Tsai CY, Chen CY, Chi HC, Tseng YH, Chung PJ, Lin YH, Chung IH, Chen CY, Lin KH. MicroRNA-196a/-196b promote cell metastasis via negative regulation of radixin in human gastric cancer. Cancer Lett. 2014;351:222–31.

    Article  CAS  PubMed  Google Scholar 

  45. Lu YC, Chang JT, Liao CT, Kang CJ, Huang SF, Chen IH, Huang CC, Huang YC, Chen WH, Tsai CY, Wang HM, Yen TC, You GR, Chiang CH, Cheng AJ. OncomiR-196 promotes an invasive phenotype in oral cancer through the NME4-JNK-TIMP1-MMP signaling pathway. Mol Cancer. 2014;13:218.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang K, Li J, Guo H, Xu X, Xiong G, Guan X, Liu B, Li J, Chen X, Yang K, Bai Y. MiR-196a binding-site snp regulates RAP1A expression contributing to esophageal squamous cell carcinoma risk and metastasis. Carcinogenesis. 2012;33:2147–54.

    Article  CAS  PubMed  Google Scholar 

  47. Mueller DW, Bosserhoff AK. MicroRNA miR-196a controls melanoma-associated genes by regulating HOX-C8 expression. International journal of cancer Journal international du cancer. 2011;129:1064–74.

    Article  CAS  PubMed  Google Scholar 

  48. Li Y, Zhang M, Chen H, Dong Z, Ganapathy V, Thangaraju M, Huang S. Ratio of miR-196s to HOXC8 messenger RNA correlates with breast cancer cell migration and metastasis. Cancer Res. 2010a;70:7894–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Braig S, Mueller DW, Rothhammer T, Bosserhoff AK. MicroRNA miR-196a is a central regulator of HOX-B7 and BMP4 expression in malignant melanoma. Cellular and molecular life sciences: CMLS. 2010;67:3535–48.

    Article  CAS  PubMed  Google Scholar 

  50. Coskun E, von der Heide EK, Schlee C, Kuhnl A, Gokbuget N, Hoelzer D, Hofmann WK, Thiel E, Baldus CD. The role of microRNA-196a and microRNA-196b as ERG regulators in acute myeloid leukemia and acute t-lymphoblastic leukemia. Leuk Res. 2011;35:208–13.

    Article  CAS  PubMed  Google Scholar 

  51. Chen W, Cai F, Zhang B, Barekati Z, Zhong XY. The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2013;34:455–62.

    Article  CAS  Google Scholar 

  52. Boissan M, Lacombe ML. Nm23/NDP kinases in hepatocellular carcinoma. J Bioenerg Biomembr. 2006;38:169–75.

    Article  CAS  PubMed  Google Scholar 

  53. Qu L, Liang L, Su J, Yang Z. Inhibitory effect of upregulated DR-nm23 expression on invasion and metastasis in colorectal cancer. European journal of cancer prevention: the official journal of the European Cancer Prevention Organisation (ECP). 2013;22:512–22.

    Article  CAS  Google Scholar 

  54. Chen SL, Wu YS, Shieh HY, Yen CC, Shen JJ, Lin KH. P53 is a regulator of the metastasis suppressor gene Nm23-H1. Mol Carcinog. 2003;36:204–14.

    Article  CAS  PubMed  Google Scholar 

  55. Groblewska M, Siewko M, Mroczko B, Szmitkowski M. The role of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) in the development of esophageal cancer. Folia histochemica et cytobiologica / Polish Academy of Sciences, Polish Histochemical and Cytochemical Society. 2012;50:12–9.

    Article  Google Scholar 

  56. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  CAS  PubMed  Google Scholar 

  57. Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, Baba H, Mori M. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci. 2010;101:293–9.

    Article  CAS  PubMed  Google Scholar 

  58. Lei H, Wang H, Juan AH, Ruddle FH. The identification of Hoxc8 target genes. Proc Natl Acad Sci U S A. 2005;102:2420–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hu Z, Chen J, Tian T, Zhou X, Gu H, Xu L, Zeng Y, Miao R, Jin G, Ma H, Chen Y, Shen H. Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest. 2008;118:2600–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhan JF, Chen LH, Chen ZX, Yuan YW, Xie GZ, Sun AM, Liu Y. A functional variant in microRNA-196a2 is associated with susceptibility of colorectal cancer in a chinese population. Arch Med Res. 2011;42:144–8.

    Article  CAS  PubMed  Google Scholar 

  61. Li XD, Li ZG, Song XX, Liu CF. A variant in microRNA-196a2 is associated with susceptibility to hepatocellular carcinoma in chinese patients with cirrhosis. Pathology. 2010b;42:669–73.

    Article  CAS  PubMed  Google Scholar 

  62. Lee SJ, Seo JW, Chae YS, Kim JG, Kang BW, Kim WW, Jung JH, Park HY, Jeong JY, Park JY. Genetic polymorphism of miR-196a as a prognostic biomarker for early breast cancer. Anticancer Res. 2014;34:2943–9.

    CAS  PubMed  Google Scholar 

  63. Hong MJ, Choi YY, Jang JA, Jung HJ, Lee SY, Lee WK, Yoo SS, Lee J, Cha SI, Kim CH, Lee E, Jeon HS, Son JW, Park JY. Association between genetic variants in pre-microRNAs and survival of early-stage NSCLC. Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer. 2013;8:703–10.

    Article  Google Scholar 

  64. Xu Y, Li L, Xiang X, Wang H, Cai W, Xie J, Han Y, Bao S, Xie Q. Three common functional polymorphisms in microRNA encoding genes in the susceptibility to hepatocellular carcinoma: a systematic review and meta-analysis. Gene. 2013;527:584–93.

    Article  CAS  PubMed  Google Scholar 

  65. Du W, Ma XL, Zhao C, Liu T, YL D, Kong WQ, Wei BL, JY Y, Li YY, Huang JW, Li ZK, Liu L. Associations of single nucleotide polymorphisms in miR-146a, miR-196a, miR-149 and miR-499 with colorectal cancer susceptibility. Asian Pacific journal of cancer prevention: APJCP. 2014b;15:1047–55.

    Article  PubMed  Google Scholar 

  66. Wang S, Tao G, Wu D, Zhu H, Gao Y, Tan Y, Wang M, Gong W, Zhou Y, Zhou J, Zhang Z. A functional polymorphism in miR196a2 is associated with risk and prognosis of gastric cancer. Mol Carcinog. 2013;52(Suppl 1):E87–95.

    Article  CAS  PubMed  Google Scholar 

  67. Xu Q, Liu JW, Yuan Y. Comprehensive assessment of the association between miRNA polymorphisms and gastric cancer risk. Mutation research Reviews in mutation research. 2015;763:148–60.

    Article  CAS  PubMed  Google Scholar 

  68. Darda L, Hakami F, Morgan R, Murdoch C, Lambert DW, Hunter KD. The role of HOXB9 and miR-196a in head and neck squamous cell carcinoma. PLoS One. 2015;10:e0122285.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Villegas-Ruiz V, Juarez-Mendez S, Perez-Gonzalez OA, Arreola H, Paniagua-Garcia L, Parra-Melquiadez M, Peralta-Rodriguez R, Lopez-Romero R, Monroy-Garcia A, Mantilla-Morales A, Gomez-Gutierrez G, Roman-Bassaure E, Salcedo M. Heterogeneity of microRNAs expression in cervical cancer cells: over-expression of miR-196a. International journal of clinical and experimental pathology. 2014;7:1389–401.

    PubMed  PubMed Central  Google Scholar 

  70. Lu YC, Chang JT, Huang YC, Huang CC, Chen WH, Lee LY, Huang BS, Chen YJ, Li HF, Cheng AJ. Combined determination of circulating miR-196a and miR-196b levels produces high sensitivity and specificity for early detection of oral cancer. Clin Biochem. 2015;48:115–21.

    Article  CAS  PubMed  Google Scholar 

  71. Kan T, Meltzer SJ. MicroRNAs in Barrett’s esophagus and esophageal adenocarcinoma. Curr Opin Pharmacol. 2009;9:727–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shi L, Zhang C, Zhao D, Liu K, Li T, Tian H. MiR-196a-2 c>t polymorphism as a susceptibility factor for colorectal cancer. Int J Clin Exp Med. 2015;8:2600–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Schimanski CC, Frerichs K, Rahman F, Berger M, Lang H, Galle PR, Moehler M, Gockel I. High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells. World J Gastroenterol. 2009;15:2089–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Saito K, Inagaki K, Kamimoto T, Ito Y, Sugita T, Nakajo S, Hirasawa A, Iwamaru A, Ishikura T, Hanaoka H, Okubo K, Onozaki T, Zama T. MicroRNA-196a is a putative diagnostic biomarker and therapeutic target for laryngeal cancer. PLoS One. 2013;8:e71480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dou T, Wu Q, Chen X, Ribas J, Ni X, Tang C, Huang F, Zhou L, Lu D. A polymorphism of microRNA196a genome region was associated with decreased risk of glioma in chinese population. J Cancer Res Clin Oncol. 2010;136:1853–9.

    Article  CAS  PubMed  Google Scholar 

  76. Liu P, Xin F, Ma CF. Clinical significance of serum miR-196a in cervical intraepithelial neoplasia and cervical cancer. Genetics and molecular research: GMR. 2015;14:17995–8002.

    Article  CAS  PubMed  Google Scholar 

  77. Fan Y, Fan J, Huang L, Ye M, Huang Z, Wang Y, Li Q, Huang J. Increased expression of microRNA-196a predicts poor prognosis in human ovarian carcinoma. International journal of clinical and experimental pathology. 2015;8:4132–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu J, Gao J, Du Y, Li Z, Ren Y, Gu J, Wang X, Gong Y, Wang W, Kong X. Combination of plasma microRNAs with serum CA19-9 for early detection of pancreatic cancer. International journal of cancer Journal international du cancer. 2012b;131:683–91.

    Article  CAS  PubMed  Google Scholar 

  79. Aso T, Ohtsuka T, Tamura K, Ideno N, Kono H, Nagayoshi Y, Ohuchida K, Ueda J, Takahata S, Shindo K, Aishima S, Oda Y, Mizumoto K, Tanaka M. Elevated expression level of microRNA-196a is predictive of intestinal-type intraductal papillary mucinous neoplasm of the pancreas. Pancreas. 2014;43:361–6.

    Article  CAS  PubMed  Google Scholar 

  80. Xue Y, Abou Tayoun AN, Abo KM, Pipas JM, Gordon SR, Gardner TB, Barth Jr RJ, Suriawinata AA, Tsongalis GJ. MicroRNAs as diagnostic markers for pancreatic ductal adenocarcinoma and its precursor, pancreatic intraepithelial neoplasm. Cancer genetics. 2013;206:217–21.

  81. Szafranska-Schwarzbach AE, Adai AT, Lee LS, Conwell DL, Andruss BF. Development of a miRNA-based diagnostic assay for pancreatic ductal adenocarcinoma. Expert Rev Mol Diagn. 2011;11:249–57.

    CAS  PubMed  Google Scholar 

  82. Kong X, Du Y, Wang G, Gao J, Gong Y, Li L, Zhang Z, Zhu J, Jing Q, Qin Y, Li Z. Detection of differentially expressed microRNAs in serum of pancreatic ductal adenocarcinoma patients: miR-196a could be a potential marker for poor prognosis. Dig Dis Sci. 2011;56:602–9.

    Article  CAS  PubMed  Google Scholar 

  83. Niinuma T, Suzuki H, Nojima M, Nosho K, Yamamoto H, Takamaru H, Yamamoto E, Maruyama R, Nobuoka T, Miyazaki Y, Nishida T, Bamba T, Kanda T, Ajioka Y, Taguchi T, Okahara S, Takahashi H, Nishida Y, Hosokawa M, Hasegawa T, Tokino T, Hirata K, Imai K, Toyota M, Shinomura Y. Upregulation of miR-196a and hotair drive malignant character in gastrointestinal stromal tumors. Cancer Res. 2012;72:1126–36.

    Article  CAS  PubMed  Google Scholar 

  84. Li JH, Luo N, Zhong MZ, Xiao ZQ, Wang JX, Yao XY, Peng Y, Cao J: Inhibition of microRNA-196a might reverse cisplatin resistance of A549/DDP non-small-cell lung cancer cell line. Tumour biology the journal of the International Society for Oncodevelopmental Biology and Medicine 2015

  85. Wu XM, Shao XQ, Meng XX, Zhang XN, Zhu L, Liu SX, Lin J, Xiao HS. Genome-wide analysis of microRNA and mRNA expression signatures in hydroxycamptothecin-resistant gastric cancer cells. Acta Pharmacol Sin. 2011;32:259–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim HY, Yoon JH, Lee HS, Cheong JY, Cho SW, Shin HD, Kim YJ. MicroRNA-196a-2 polymorphisms and hepatocellular carcinoma in patients with chronic hepatitis B. J Med Virol. 2014;86:446–53.

    Article  CAS  PubMed  Google Scholar 

  87. Xu X, Ling Q, Wang J, Xie H, Wei X, Lu D, Hu Q, Zhang X, Wu L, Zhou L, Zheng S. Donor miR-196a-2 polymorphism is associated with hepatocellular carcinoma recurrence after liver transplantation in a Han Chinese population. International journal of cancer Journal international du cancer. 2016;138:620–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No.81272601, 81472198), the Key Clinical Medicine Technology Foundation of Jiangsu Province (No.BL2014096), the Medical Key Talented Person Foundation of the Jiangsu Provincial Developing Health Project (No.RC2011080), the Innovation Team Project of the Second Affiliated Hospital of Nanjing Medical University, and the “333 high class Talented Man Project” (No.2011-III-2630).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Xia Wang.

Additional information

Zhen-Yao Chen and Xin Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, ZY., Chen, X. & Wang, ZX. The role of microRNA-196a in tumorigenesis, tumor progression, and prognosis. Tumor Biol. 37, 15457–15466 (2016). https://doi.org/10.1007/s13277-016-5430-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5430-2

Keywords

Navigation