Skip to main content

Advertisement

Log in

Manganese-superoxide dismutase (Mn-SOD) overexpression is a common event in colorectal cancers with mitochondrial microsatellite instability

  • Original Article
  • Published:
Tumor Biology

Abstract

Mitochondrial displacement loop (D-loop) is a hot spot for mitochondrial DNA (mtDNA) alterations that effects cellular reactive oxygen species (ROS) generation. Manganese-superoxide dismutase (Mn-SOD) is a major antioxidant enzyme that protects cells from ROS-mediated damage. In the present study, we investigated the relationship between sequence alterations of mitochondrial D-loop and Mn-SOD expression in colorectal cancer (CRC). Genotyping of entire mitochondrial D-loop (1124 bp) was carried out on mtDNA of analogous tumor and normal tissues from 35 CRC patients of south Indian origin by PCR-sequencing analysis. Tumor-specific large-scale mtDNA deletions and Mn-SOD expression was analyzed by PCR and Western blot analysis, respectively. We identified 87 polymorphisms in the D-loop region of tumor and/or control tissues. Polymorphisms were predominantly located in hypervariable region I (67.9 %) than in II (32.1 %) of D-loop. Significantly increased mtDNA microsatellite instability (mtMSI) [310C’ insertion (P = 0.00001) and T16189C (P = 0.0007)] and elevated Mn-SOD expression was observed in tumor tissues compared with controls. Interestingly, mtMSI was significantly high in tumors with Mn-SOD overexpression. Tumor-specific large-scale mtDNA deletions were not observed in CRC tissues. In conclusion, mtMSI and Mn-SOD overexpression are a common event in CRC. The analysis of mtMSI and/or Mn-SOD expression might help to identify patients at high risk for disease outcome, thereby helping to refine therapeutic decisions in CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87.

    Article  PubMed  Google Scholar 

  2. Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G, et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Article  CAS  Google Scholar 

  3. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med. 2009;361:2449–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Govatati S, Singamsetty GK, Nallabelli N, Malempati S, Rao PS, Madamchetty VKK, et al. Contribution of cyclin D1 (CCND1) and E-cadherin (CDH1) alterations to colorectal cancer susceptibility: a case–control study. Tumor Biol. 2014;35:12059–67.

    Article  CAS  Google Scholar 

  5. Singamsetty GK, Malempati S, Bhogadhi S, Kondreddy R, Govatati S, Tangudu NK, et al. TP53 alterations and colorectal cancer predisposition in south Indian population: a case–control study. Tumor Biol. 2014;35:2303–11.

    Article  CAS  Google Scholar 

  6. Pelicci PG, Dalton P, Giorgio M. The other face of ROS: a driver of stem cell expansion in colorectal cancer. Cell Stem Cell. 2013;12:761–73.

    Article  Google Scholar 

  7. Tipirisetti NR, Rao KL, Govatati S, Govatati S, Vuree S, Singh L, et al. Mitochondrial genome variations in advanced stage breast cancer: a case-control study. Mitochondrion. 2013;13:372–8.

    Article  CAS  PubMed  Google Scholar 

  8. Govatati S, Deenadayal M, Shivaji S, Bhanoori M. Mitochondrial NADH:ubiquinone oxidoreductase alterations are associated with endometriosis. Mitochondrion. 2013;13:782–90.

    Article  CAS  PubMed  Google Scholar 

  9. Govatati S, Tipirisetti TR, Perugu S, Kodati VL, Deenadayal M, Vishnupriya S, et al. Mitochondrial genome variations in advanced stage endometriosis: a study in South Indian population. PLoS One. 2012;7:e40668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39:359–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell. 2006;125:1241–52.

    Article  CAS  PubMed  Google Scholar 

  12. Anderson S, Bankier AT, Barrell BG, De Bruijn MHL, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290:457–65.

    Article  CAS  PubMed  Google Scholar 

  13. Lightowlers RN, Chinnery PF, Thunball DM, Howell N. Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends Genet. 1997;13:450–5.

    Article  CAS  PubMed  Google Scholar 

  14. Chatterjee A, Mambo E, Sidransky D. Mitochondrial DNA mutations in human cancer. Oncogene. 2006;25:4663–74.

    Article  CAS  PubMed  Google Scholar 

  15. Clayton DA. Transcription and replication of mitochondrial DNA. Hum Reprod. 2000;2:11–7.

    Article  Google Scholar 

  16. Tipirisetti NR, Govatati S, Pullari P, Malempati S, Thupurani MK, Perugu S, et al. Mitochondrial control region alterations and breast cancer risk: a study in south Indian population. PLoS One. 2014;9:e85363.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Govatati S, Deenadayal M, Shivaji S, Bhanoori M. Mitochondrial displacement loop alterations are associated with endometriosis. Fertil Steril. 2013;99:1980–6.

    Article  CAS  PubMed  Google Scholar 

  18. Chen JB, Yang YH, Lee WC, Liou CW, Lin TK, Chung YH, et al. Sequence-based polymorphisms in the mitochondrial D-loop and potential SNP predictors for chronic dialysis. PLoS One. 2012;7:e41125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mueller EE, Eder W, Ebner S, Schwaiger E, Santic D, Kreindl T, et al. The mitochondrial T16189C polymorphism is associated with coronary artery disease in Middle European populations. PLoS One. 2011;6:e16455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chang SC, Lin PC, Yang SH, Wang HS, Liang WY, Lin JK. Mitochondrial D-loop mutation is a common event in colorectal cancers with p53 mutations. Int J Color Dis. 2009;24:623–8.

    Article  Google Scholar 

  21. Akouchekian M, Houshmand M, Hemati S, Ansaripour M, Shafa M. High rate of mutation in mitochondrial DNA displacement loop region in human colorectal cancer. Dis Colon Rectum. 2009;52:526–30.

    Article  PubMed  Google Scholar 

  22. Nicotera TM, Privalle C, Wang TC, Oshimura M, Barrett JC. Differential proliferative responses of Syrian hamster embryo fibroblasts to paraquat-generated superoxide radicals depending on tumor suppressor gene function. Cancer Res. 1994;54:3884–8.

    CAS  PubMed  Google Scholar 

  23. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552:335–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Halliwell B, Gutteridge J. Free radicals in biology and medicine. 3rd ed. Oxford: Oxford University Press; 1999.

    Google Scholar 

  25. Sreevalsan S, Safe S. Reactive oxygen species and colorectal cancer. Curr Color Cancer Rep. 2013;9:350–7.

    Article  Google Scholar 

  26. Inokuma T, Haraguchi M, Fujita F, Tajima Y, Kanematsu T. Oxidative stress and tumor progression in colorectal cancer. Hepatogastroenterology. 2009;56:343–7.

    CAS  PubMed  Google Scholar 

  27. Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat. 2004;7:97–110.

    Article  CAS  PubMed  Google Scholar 

  28. Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W. Superoxide dismutase as a target for the selective killing of cancer cells. Nature. 2000;407:390–5.

    Article  CAS  PubMed  Google Scholar 

  29. Janssen AM, Bosman CB, van Duijn W, de Ruit MM O-v, Kubben FJ, Griffioen G, et al. Superoxide dismutases in gastric and esophageal cancer and the prognostic impact in gastric cancer. Clin Cancer Res. 2000;6:3183–92.

    CAS  PubMed  Google Scholar 

  30. Van Driel BE, Lyon H, Hoogenraad DC, Anten S, Hansen U, Van Noorden CJ. Expression of CuZn- and Mn-superoxide dismutase in human colorectal neoplasms. Free Radic Biol Med. 1997;23:435–44.

    Article  PubMed  Google Scholar 

  31. Janssen AM, Bosman CB, Sier CF, Griffioen G, Kubben FJ, Lamers CB, et al. Superoxide dismutases in relation to the overall survival of colorectal cancer patients. Br J Cancer. 1998;78:1051–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Toh Y, Kuninaka S, Oshiro T, Ikeda Y, Nakashima H, Baba H, et al. Overexpression of manganese superoxide dismutase mRNA may correlate with aggressiveness in gastric and colorectal adenocarcinomas. Int J Oncol. 2000;17:107–12.

    CAS  PubMed  Google Scholar 

  33. International Union Against Cancer (UICC): In: TNM classification of malignant tumours. Hermaek P, Hutter RVP and Sobin LH (eds.). Berlin: Springer-Verlag, 1998.

  34. Govatati S, Chakravarty B, Deenadayal M, Kodati VL, Latha M, Shivaji S, et al. p53 and risk of endometriosis in Indian women. Genet Test Mol Biomarkers. 2012;16:865–73.

    Article  CAS  PubMed  Google Scholar 

  35. Govatati S, Tangudu NK, Deenadayal M, Chakravarty B, Shivaji S, Bhanoori M. Association of E-cadherin single nucleotide polymorphisms with the increased risk of endometriosis in Indian women. Mol Hum Reprod. 2012;18:280–7.

    Article  CAS  PubMed  Google Scholar 

  36. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet. 1999;23:147.

    Article  CAS  PubMed  Google Scholar 

  37. Govatati S, Challa K, Reddy SB, Pramod K, Deenadayal M, Chakravarty B, et al. BRCA1 alterations are associated with endometriosis, but BRCA2 alterations show no detectable endometriosis risk: a study in Indian population. J Assist Reprod Genet. 2015;32:277–85.

    Article  PubMed  Google Scholar 

  38. Govatati S, Kodati VL, Deenadayal M, Chakravarty B, Shivaji S, Bhanoori M. Mutations in the PTEN tumor gene and risk of endometriosis: a case–control study. Hum Reprod. 2014;29:324–36.

    Article  CAS  PubMed  Google Scholar 

  39. Stoneking M. Hypervariable sites in the mtDNA control region are mutational hotspots. Am J Hum Genet. 2000;7:1029–32.

    Article  Google Scholar 

  40. Kang D, Miyako K, Kai Y, Irie T, Takeshige K. In vivo determination of replication origins of human mitochondrial DNA by ligation-mediated polymerase chain reaction. J Biol Chem. 1997;272:15275–9.

    Article  CAS  PubMed  Google Scholar 

  41. Wang Y, Liu VW, Ngan HY, Nagley P. Frequent occurrence of mitochondrial microsatellite instability in the D-loop region of human cancers. Ann N Y Acad Sci. 2005;1042:123–9.

    Article  CAS  PubMed  Google Scholar 

  42. Xu B, Clayton DA. RNA-DNA hybrid formation at the human mitochondrial heavy-strand origin ceases at replication start sites: an implication for RNA-DNA hybrids serving as primers. EMBO J. 1996;15:3135–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Pham XH, Farge G, Shi Y, Gaspari M, Gustafsson CM, Falkenberg M. Conserved sequence box II directs transcription termination and primer formation in mitochondria. J Biol Chem. 2006;281:24647–52.

    Article  CAS  PubMed  Google Scholar 

  44. Berger C, Hatzer-Grubwieser P, Hohoff C, Parson W. Evaluating sequence-derived mtDNA length heteroplasmy by amplicon size analysis. Forensic Sci Int Genet. 2011;5:142–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fernandez-Silva P, Enriquez JA, Montoya J. Replication and transcription of mammalian mitochondrial DNA. Exp Physiol. 2003;88:41–56.

    Article  CAS  PubMed  Google Scholar 

  46. Liou CW, Lin TK, Chen JB, Tiao MM, Weng SW, Chen SD, et al. Association between a common mitochondrial DNA D-loop polycytosine variant and alteration of mitochondrial copy number in human peripheral blood cells. J Med Genet. 2010;47:723–8.

    Article  CAS  PubMed  Google Scholar 

  47. Rogounovitch TI, Saenko VA, Shimizu-Yoshida Y, Abrosimov AY, Lushnikov EF, et al. Large deletions in mitochondrial DNA in radiation-associated human thyroid tumors. Cancer Res. 2002;62:7031–41.

    CAS  PubMed  Google Scholar 

  48. Zeviani M, Moraes CT, DiMauro S, Nakase H, Bonilla E, et al. Deletions of mitochondrial DNA in Kearns-Sayre syndrome. Neurology. 1998;51:1525–8.

    Article  PubMed  Google Scholar 

  49. Holt IJ, Lorimer HE, Jacobs HT. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell. 2000;100:515–24.

    Article  CAS  PubMed  Google Scholar 

  50. Krishnan KJ, Reeve AK, Samuels DC, Chinnery PF, Blackwood JK, et al. What causes mitochondrial DNA deletions in human cells? Nat Genet. 2008;40:275–9.

    Article  CAS  PubMed  Google Scholar 

  51. Chen T, He J, Shen L, Fang H, Nie H, Jin T, et al. The mitochondrial DNA 4,977-bp deletion and its implication in copy number alteration in colorectal cancer. BMC Med Genet. 2011;12:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We deeply thank all the medical staff and study subjects involved in this study. Dr. Suresh Govatati acknowledges the financial support from the University Grants Commission, New Delhi, under its Dr. D.S. Kothari postdoctoral scheme [No.F.4-2/2006 (BSR)/13-1014/2013 (BSR)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varadacharyulu Nallanchakravarthula.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource ESM 1

(DOC 30 kb)

Online Resource ESM 2

(DOC 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govatati, S., Malempati, S., Saradamma, B. et al. Manganese-superoxide dismutase (Mn-SOD) overexpression is a common event in colorectal cancers with mitochondrial microsatellite instability. Tumor Biol. 37, 10357–10364 (2016). https://doi.org/10.1007/s13277-016-4918-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4918-0

Keywords

Navigation