Skip to main content
Log in

Contribution of cyclin D1 (CCND1) and E-cadherin (CDH1) alterations to colorectal cancer susceptibility: a case–control study

  • Research Article
  • Published:
Tumor Biology

Abstract

Cyclin D1 (CCND1) and E-cadherin (CDH1) are two important genes of the β-catenin/LEF pathway that is involved in tumorigenesis of various cancers including colorectal cancer (CRC). However, studies of the association between genetic variants of these two genes and CRC have shown conflicting results. We conducted a genetic association study in South Indian population (cases, 103; controls, 107) to assess the association of CCND1 870G/A and CDH1160C/A single nucleotide polymorphisms (SNPs) with CRC risk. Genotyping of SNPs was performed by PCR sequencing analysis. Haplotype frequencies for multiple loci and the standardized disequilibrium coefficient (D′) for pair-wise linkage disequilibrium (LD) were assessed by Haploview Software. In addition, to better understand the role of CCND1 and CDH1 in the pathophysiology of CRC, the expression pattern was evaluated in analogous tumor and adjacent normal tissues from 23 CRC patients by Western blot analysis. The frequencies of CCND1 870A/A (P = 0.045) genotype, CDH1160A allele (P = 0.042), and 870A/−160A haplotype (P = 0.002) were significantly higher in patients as compared with controls. Strong LD was observed between 870G/A and −160C/A SNPs in cases (D′ = 0.76) as compared to controls (D′ = 0.32). Furthermore, elevated CCND1 and diminished CDH1 expression was observed in tumor tissue as compared with analogous normal tissue of CRC patients. Interestingly, advanced-stage tumors showed wider expression alterations than in early-stage tumors. In conclusion, CCND1 870G/A and CDH1160C/A SNPs may modify the risk of CRC susceptibility in South Indian population. In addition, elevated CCND1 and diminished CDH1 expression appears to be useful prognostic markers for CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal cancer. CA Cancer J Clin. 2009;59:366–78.

    PubMed  Google Scholar 

  2. Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G, et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    CAS  Google Scholar 

  3. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med. 2009;361:2449–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Singamsetty GK, Malempati S, Bhogadhi S, Kondreddy R, Govatati S, Tangudu NK, et al. TP53 alterations and colorectal cancer predisposition in south Indian population: a case-control study. Tumor Biol. 2014;35:2303–11.

    CAS  Google Scholar 

  5. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.

    CAS  Google Scholar 

  6. Fuchs SY, Ougolkov AV, Spiegelman VS, Minamoto T. Oncogenic β-catenin signaling networks in colorectal cancer. Cell Cycle. 2005;4:1522–39.

    CAS  PubMed  Google Scholar 

  7. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A. 1999;96:5522–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Arber N, Hibshoosh H, Moss SF, Sutter T, Zhang Y, Begg M, et al. Increased expression of cyclin D1 is an early event in multistage colorectal carcinogenesis. Gastroenterology. 1996;110:669–74.

    CAS  PubMed  Google Scholar 

  9. Arber N, Doki Y, Han EK, Sgambato A, Zhou P, Kim NH, et al. Antisense to cyclin D1 inhibits the growth and tumorigenicity of human colon cancer cells. Cancer Res. 1997;57:1569–74.

    CAS  PubMed  Google Scholar 

  10. Gerard C, Goldbeter A. Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle. Proc Natl Acad Sci U S A. 2009;106:21643–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Berthet C, Klarmann KD, Hilton MB, Suh HC, Keller JR, Kiyokawa H, et al. Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation. Dev Cell. 2006;10:563–73.

    CAS  PubMed  Google Scholar 

  12. Betticher DC, Thatcher N, Altermatt HJ, Hoban P, Ryder WD, Heighway J. Alternate splicing produces a novel cyclin D1 transcript. Oncogene. 1995;11:1005–11.

    CAS  PubMed  Google Scholar 

  13. Pabalan N, Bapat B, Sung L, Jarjanazi H, Pabalan OF, Ozcelik H. Cyclin D1 Pro241Pro (CCND1-G870A) polymorphism is associated with increased cancer risk in human populations: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2008;17:2773–81.

    CAS  PubMed  Google Scholar 

  14. Yang Y, Wang F, Shi C, Zou Y, Qin H, Ma Y. Cyclin D1 G870A polymorphism contributes to colorectal cancer susceptibility: evidence from a systematic review of 22 case-control studies. PLoS One. 2012;7:e36813.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, et al. E-cadherin-mediated cell–cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol. 1991;113:173–85.

    CAS  PubMed  Google Scholar 

  16. Elzagheid A, Ålgars A, Bendardaf R, Lamlum H, Ristamaki R, Collan Y, et al. E-cadherin expression pattern in primary colorectal carcinomas and their metastases reflects disease outcome. World J Gastroenterol. 2006;12:4304–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kowalski PJ, Rubin MA, Kleer CG. E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Res. 2003;5:R217–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dorudi S, Sheffield JR, Poulsom R, Northover JMA, Hartt IR. E-cadherin expression in colorectal cancer. An immunocytochemical and in situ hybridization study. Am J Pathol. 1993;142:1981–6.

    Google Scholar 

  19. van de Wetering M, Barker N, Harkes IC, van der Heyden M, Dijk NJ, Hollestelle A, et al. Mutant E-cadherin breast cancer cells do not display constitutive Wnt signaling. Cancer Res. 2001;61:278–84.

    PubMed  Google Scholar 

  20. Li LC, Chui RM, Sasaki M, Nakajima K, Perinchery G, Au HC, et al. A single nucleotide polymorphism in the E-cadherin gene promoter alters transcriptional activities. Cancer Res. 2002;60:873–6.

    Google Scholar 

  21. Tipirisetti NR, Govatati S, Govatati S, Rao KL, Cingeetham A, Singh L, et al. Association of E-cadherin single nucleotide polymorphisms with the increased risk of breast cancer: a study in South Indian women. Genet Test Mol Biomarkers. 2013;17:494–500.

    CAS  PubMed  Google Scholar 

  22. Govatati S, Tangudu NK, Deenadayal M, Chakravarty B, Shivaji S, Bhanoori M. Association of E-cadherin single nucleotide polymorphisms with the increased risk of endometriosis in Indian women. Mol Hum Reprod. 2012;18:280–7.

    CAS  PubMed  Google Scholar 

  23. Geng P, Chen Y, Ou J, Yin X, Sa R, Liang H. The E-cadherin (CDH1) -C160A polymorphism and colorectal cancer susceptibility: a meta-analysis. DNA Cell Biol. 2012;31:1070–7.

    CAS  PubMed  Google Scholar 

  24. International Union Against Cancer (UICC): In: TNM classification of malignant tumours. Hermaek P, Hutter RVP and Sobin LH (eds.). Berlin: Springer-Verlag, 1998.

  25. Govatati S, Tipirisetti NR, Perugu S, Kodati VL, Deenadayal M, Vishnupriya S, et al. Mitochondrial genome variations in advanced stage endometriosis: a study in South Indian population. PLoS One. 2012;7:e40668.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Govatati S, Deenadayal M, Shivaji S, Bhanoori M. Mitochondrial D-loop alterations are associated with endometriosis. Fertil Steril. 2013;99:1980–6.

    CAS  PubMed  Google Scholar 

  27. Govatati S, Kodati VL, Deenadayal M, Chakravarty B, Shivaji S, Bhanoori M. Mutations in the PTEN tumor suppressor gene and risk of endometriosis: a case-control study. Hum Reprod. 2014;29:324–36.

    CAS  PubMed  Google Scholar 

  28. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5.

    CAS  PubMed  Google Scholar 

  29. Govatati S, Chakravarty B, Deenadayal M, Kodati VL, Latha M, Shivaji S, et al. p53 and risk of endometriosis in Indian women. Genet Test Mol Biomarkers. 2012;16:865–73.

    CAS  PubMed  Google Scholar 

  30. Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer. 2009;9:749–58.

  31. Solomon DA, Wang Y, Fox SR, Lambeck TC, Giesting S, Lan Z, et al. Cyclin D1 splice variants. Differential effects on localization, RB phosphorylation, and cellular transformation. J Biol Chem. 2003;278:30339–47.

    CAS  PubMed  Google Scholar 

  32. Zhang LQ, Huang XE, Wang J, Shang JQ, Bai J, Liu FY, et al. The cyclin D1 G870A polymorphism and colorectal cancer susceptibility: a meta-analysis of 20 populations. Asian Pacific J Cancer Prev. 2011;12:81–5.

    Google Scholar 

  33. Baranwal S, Alahari SK. Molecular mechanisms controlling E-cadherin expression in breast cancer. Biochem Biophys Res Commun. 2009;384:6–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Giroldi LA, Bringuier PP, Weijert M, Jansen C, van Bokhoven A, Schalken JA. Role of E boxes in the repression of E-cadherin expression. Biochem Bioph Res Co. 1997;24:453–8.

    Google Scholar 

  35. Ogino S, Nosho K, Irahara N, Kure S, Shima K, Baba Y, et al. A cohort study of cyclin D1 expression and prognosis in 602 colon cancer cases. Clin Cancer Res. 2009;15:4431–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Holland TA, Elder J, McCloud JM, Hall C, Deakin M, Fryer AA, et al. Subcellular localisation of cyclin D1 protein in colorectal tumours is associated with p21(WAF1/CIP1) expression and correlates with patient survival. Int J Cancer. 2001;95:302–6.

    CAS  PubMed  Google Scholar 

  37. Bahnassy AA, Zekri AR, El-Houssini S, El-Shehaby AM, Mahmoud MR, Abdallah S, et al. Cyclin A and cyclin D1 as significant prognostic markers in colorectal cancer patients. BMC Gastroenterol. 2004;4:22.

    PubMed  PubMed Central  Google Scholar 

  38. Schmitz KJ, Wohlschlaeger J, Alakus H, Bohr J, Stauder MA, Worm K, et al. Activation of extracellular regulated kinases (ERK1/2) but not AKT predicts poor prognosis in colorectal carcinoma and is associated with k-ras mutations. Virchows Arch. 2007;450:151–9.

    CAS  PubMed  Google Scholar 

  39. Zbar AP, Simopoulos C, Karayiannakis AJ. Cadherins: an integral role in inflammatory bowel disease and mucosal restitution. J Gastroenterol. 2004;39:413–21.

    CAS  PubMed  Google Scholar 

  40. Elzagheid A, Buhmeida A, Laato M, El-Faitori O, Syrjänen K, Collan Y, et al. Loss of E-cadherin expression predicts disease recurrence and shorter survival in colorectal carcinoma. APMIS. 2012;120:539–48.

    PubMed  Google Scholar 

  41. Kwak JM, Min BW, Lee JH, Choi JS, Lee SI, Park SS, et al. The prognostic significance of E-cadherin and liver intestine-cadherin expression in colorectal cancer. Dis Colon Rectum. 2007;50:1873–80.

    PubMed  Google Scholar 

  42. Delektorskaya VV, Perevoshchikov AG, Golovkov DA, Kushlinskii NE. Expression of E-cadherin, beta-catenin, and CD-44v6 cell adhesion molecules in primary tumors and metastases of colorectal adenocarcinoma. Bull Exp Biol Med. 2005;139:706–10.

    CAS  PubMed  Google Scholar 

  43. Saito T, Masuda N, Miyazaki T, Kanoh K, Suzuki H, Shimura T, et al. Expression of EphA2 and E-cadherin in colorectal cancer: correlation with cancer metastasis. Oncol Rep. 2004;11:605–11.

    CAS  PubMed  Google Scholar 

  44. Ikeguchi M, Taniguchi T, Makino M, Kaibara N. Reduced E-cadherin expression and enlargement of cancer nuclei strongly correlate with hematogenic metastasis in colorectal adenocarcinoma. Scand J Gastroenterol. 2000;35:839–46.

    CAS  Google Scholar 

  45. Hirohashi S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol. 1998;153:333–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Goodsell DS. The molecular perspective: cadherin. Oncologist. 2002;7:467–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We deeply thank all the medical staff and study subjects involved in this study. Dr. Suresh Govatati acknowledges the financial support from the University Grants Commission, New Delhi, under its Dr. D.S. Kothari postdoctoral scheme [No.F.4-2/2006 (BSR)/13-1014/2013 (BSR)]. The authors are thankful to Dr. Nageswara Rao Tipirisetti, CDFD, Hyderabad, for fruitful discussions at all stages of the manuscript preparation.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kondaiah Kassetty.

Additional information

Suresh Govatati and Gopi Krishna Singamsetty contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govatati, S., Singamsetty, G.K., Nallabelli, N. et al. Contribution of cyclin D1 (CCND1) and E-cadherin (CDH1) alterations to colorectal cancer susceptibility: a case–control study. Tumor Biol. 35, 12059–12067 (2014). https://doi.org/10.1007/s13277-014-2505-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2505-9

Keywords

Navigation