Skip to main content

Advertisement

Log in

Upregulation of MALAT-1 and its association with survival rate and the effect on cell cycle and migration in patients with esophageal squamous cell carcinoma

  • Original Article
  • Published:
Tumor Biology

Abstract

The aim of this study is to investigate whether metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) can be used as a potential therapy target for human esophageal squamous cell carcinoma. MALAT-1 expression levels were detected in 137 paired EC samples and adjacent nonneoplastic tissues. Human esophageal carcinoma cell lines EC9706 and KYSE150 were transfected with MALAT-1 small interference RNA. Cell proliferation, migration/invasion ability, cell cycle, and apoptosis were assessed. MALAT-1 expressed higher levels in esophageal cancer tissues when compared with paired adjacent normal tissues. This high expression was associated with a decreased survival rate. MALAT-1 knockdown induced a decrease in proliferation-enhanced apoptosis, inhibited migration/invasion, and reduced colony formation and led to cell cycle arrest at the G2/M phase. These data indicates that MALAT-1 could be exploited for therapeutic benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. 2015;136:E359-86.

  2. Hao Y, Wu W, Shi F, Dalmolin RJ, Yan M, Tian F, et al. Prediction of long noncoding RNA functions with co-expression network in esophageal squamous cell carcinoma. BMC Cancer. 2015;15:168.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wu W, Chan JA. Understanding the Role of Long Noncoding RNAs in the Cancer Genome. In: Wu W, Choudhry H, editors. Next Generation Sequencing in Cancer Research-Decoding Cancer Genome. 2013; Volume Vol 1. 1. New York: Springer; 2013. pp. 199–215.

  4. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136:629–41.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Q, Geng PL, Yin P, Wang XL, Jia JP, Yao J. Down-regulation of long non-coding RNA TUG1 inhibits esophageal carcinoma cell proliferation and promotes apoptosis. Asian Pac J Cancer Prev. 2013;14:2311–5.

    Article  PubMed  Google Scholar 

  6. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106:11667–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang KC, Chang HY. Molecular Mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007;129:1311–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R, et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science. 2008;322:1717–20.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science. 2008;322:750–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ørom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, et al. Long noncoding RNAs with enhancer-like function in human cells. Cell. 2010;143:46–58.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene. 2011;30:1956–62.

    Article  CAS  PubMed  Google Scholar 

  13. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142:409–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feldstein O, Nizri T, Doniger T, Jacob J, Rechavi G, Ginsberg D. The long non-coding RNA ERIC is regulated by E2F and modulates the cellular response to DNA damage. Mol Cancer. 2013;12:131.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kino T Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 2010; 3, ra8.

  17. Zhang X, Gejman R, Mahta A, Zhong Y, Rice KA, Zhou Y, et al. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res. 2010;70:2350–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, et al. Kcnq 1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromation-level regulation. Mol Cell. 2008;32:232–46.

    Article  CAS  PubMed  Google Scholar 

  19. Zang W, Wang T, Huang J, Li M, Wang Y, Du Y, et al. Long noncoding RNA PEG10 regulates proliferation and invasion of esophageal cancercells. Cancer Gene Ther. 2015;22:138–44.

    Article  CAS  PubMed  Google Scholar 

  20. Lv XB, Lian GY, Wang HR, Song E, Yao H, Wang MH. Long noncoding RNA HOTAIR is a prognostic marker for esophageal squamous cell carcinoma progression and survival. PLoS One. 2013;8, e63516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ge XS, Ma HJ, Zheng XH, Ruan HL, Liao XY, Xue WQ, et al. HOTAIR, a prognostic factor in esophageal squamous cell carcinoma, inhibits WIF-1 expression and activates Wnt pathway. Cancer Sci. 2013;104:1675–82.

    Article  CAS  PubMed  Google Scholar 

  22. Li W, Zheng J, Deng J, You Y, Wu H, Li N. Increased levels of the long intergenic non-protein coding RNA POU3F3 promote DNA methyalation in esophageal squamous cell carcinoma cells. Gastroenterology. 2014;146:1714–26.

    Article  CAS  PubMed  Google Scholar 

  23. Li X, Wu Z, Mei Q, Guo M, Fu X, Han W. Long non-coding RNA HOTAIR, a driver of malignancy, predicts negative prognosis and exhibits oncogenic activity in esophageal squamous cell carcinoma. Br J Cancer. 2013;109:2266–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xie HW, Wu QQ, Zhu B, Chen FJ, Ji L, Li SQ. Long noncoding RNA SPRY4-IT1 is upregulated in esophageal squamous cell carcinoma and associated with poor prognosis. Tumor Biol. 2014;35:7743–54.

    Article  CAS  Google Scholar 

  25. Hu L, Wu Y, Tan D, Meng H, Wang K, Bai Y, et al. Up-regulation of long noncoding RNA MALAT1 contributes to proliferation and metastasis in esophageal squamous cell carcinoma. J Exp Clin Cancer Res. 2015;34:7.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Davis IJ, His BL, Arroyo JD, Vargas SO, Yeh YA, Motyckova G, et al. Cloning of an Alpha TFEB fusion in renal tumors harboring the t (6:11)(p21:q13) chromosome translocation. Proc Natl Acad Sci U S A. 2003;100:6051–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuiper RP, Schepens M, Thijssen J, van Asseldonk M, van den Berg E, Bridge J, et al. Upregulation of the transcription factor TFEB in t(6;11)(p21;q13)-positive renal cell carcinomas due to promoter substitution. Hum Mol Genet. 2003;12:1661–9.

    Article  CAS  PubMed  Google Scholar 

  28. Rajaram V, Knezevich S, Bove KE, Perry A, Pfeifer JD. DNA sequence of the translocation breakpoints in undifferentiated embryonal sarcoma arising in mesenchymal hamartoma of the liver harboring the t(11;19)(q11;q13.4) translocation. Genes Chromosomes Cancer. 2007;46:508–13.

    Article  CAS  PubMed  Google Scholar 

  29. Tano K, Mizuno R, Okada T, Rakwal R, Shibato J, Masuo Y, et al. MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Lett. 2010;584:4575–80.

    Article  CAS  PubMed  Google Scholar 

  30. Guo F, Li Y, Liu Y, Wang J, Li G. Inhibition of metastasis-associated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion. Acta Biochim Biophys Sin. 2010;42:224–9.

    Article  CAS  PubMed  Google Scholar 

  31. Gibb EA, Brown CJ, Lam WL. The functional role of long noncoding RNA in human carcinomas. Mol Cancer. 2011;10:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang F, Yi F, Han X, Du Q, Liang Z. MALAT-1 interacts with hnRNP C in cell cycle regulation. FEBS Lett. 2013;587:3175–81.

    Article  CAS  PubMed  Google Scholar 

  33. Liu JY, Yao J, Li XM, Song YC, Wang XQ, Li YJ, et al. Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death Dis. 2014;5, e1506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tripathi V, Shen Z, Chakraborty A, Giri S, Freier SM, Wu X. Long noncoding RNA MALAT1 controls cell cycle progression by regulation the expression of oncogenic transcription factor B-MYB. PLoS Genet. 2013;9, e1003368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tripathi V, Shen Z, Chakraborty A, Giri S, Freier SM, Wu X, et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet. 2013;9, e1003368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu XS, Wang XA, Wu WG, Hu YP, Li ML, Ding Q, et al. MALAT1 promotes the proliferation and metastasis of gallbladder cancer cells by activating the ERK/MAPK pathway. Cancer Biol Ther. 2014;15:806–14.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We want to acknowledge the evaluators, research assistants, and particularly the adolescents and families who participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baosheng Zhao.

Ethics declarations

Conflicts of interest

None

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(GIF 55 kb)

High resolution image (TIFF 831 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, W., Bai, Y., Li, Y. et al. Upregulation of MALAT-1 and its association with survival rate and the effect on cell cycle and migration in patients with esophageal squamous cell carcinoma. Tumor Biol. 37, 4305–4312 (2016). https://doi.org/10.1007/s13277-015-4223-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4223-3

Keywords

Navigation