Skip to main content

Advertisement

Log in

Identification of stage-specific biomarkers in lung adenocarcinoma based on RNA-seq data

  • Research Article
  • Published:
Tumor Biology

Abstract

Tumorigenesis is a multistep process that attributes to the sequential accumulation of abnormal expression in key oncogenes or tumor suppressors. We aimed to identify stage-specific biomarkers to distinguish lung adenocarcinoma (LAC) stages in cancer progression. RNA-sequencing data of LAC and matched adjacent non-cancer tissues were downloaded from the Cancer Genome Atlas, including 29 pairs of samples from LAC at stage I, 14 from LAC at stage II, 13 from LAC at stage III, and 1 from LAC at stage IV. Differentially expressed genes (DEGs) were analyzed for each case at different stages of LAC. DEGs were further annotated based on transcription factor data information, tumor-associated gene database, and protein–protein interaction database. Functional annotation was performed for genes in PPI network by DAVID online tool. Our analysis identified 11 high-frequency DEGs in the stage I, 29 in the stage II, and 90 in the stage III of LAC. Among them, eight genes were significantly correlated with LAC stages and identified as biomarkers in LAC progression. ANGPTL5, C7orf16, EDN3, LOC150622, HOXA11AS, IL1F5, and USH1G significantly distinguished stage III from stages I and II. GJB6 was significantly enriched in the gap junction trafficking pathway, while C7orf16 and EDN3 were enriched in Wnt signaling pathway, cell cycle, and G protein-coupled receptor (GPCR) signaling. Up-regulated GJB6 especially in LAC stage II and down-regulated C7orf16 and EDN3 specifically in stage III were identified as biomarkers for distinguishing cancer stage in tumor progression through dysregulating gap junction, Wnt signaling, and GPCR signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Subramanian J, Govindan R. Lung cancer in never smokers: a review. J Clin Oncol. 2007;25:561–70.

    Article  PubMed  Google Scholar 

  2. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.

    Article  CAS  PubMed  Google Scholar 

  3. Kadara H, Kabbout M, Wistuba II. Pulmonary adenocarcinoma: a renewed entity in 2011. Respirology. 2012;17:50–65.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang J, Ou JX, Bai CX. Tobacco smoking in China: prevalence, disease burden, challenges and future strategies. Respirology. 2011;16:1165–72.

    Article  PubMed  Google Scholar 

  5. Huang P, Cao K, Zhao H. Screening of critical genes in lung adenocarcinoma via network analysis of gene expression profile. Pathol Oncol Res. 2014.

  6. Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, et al. Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci U S A. 2001;98:13784–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Feldser DM, Kostova KK, Winslow MM, Taylor SE, Cashman C, Whittaker CA, et al. Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature. 2010;468:572–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kaushal V, Mukunyadzi P, Dennis RA, Siegel ER, Johnson DE, Kohli M. Stage-specific characterization of the vascular endothelial growth factor axis in prostate cancer: expression of lymphangiogenic markers is associated with advanced-stage disease. Clin Cancer Res. 2005;11:584–93.

    CAS  PubMed  Google Scholar 

  9. Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci U S A. 2001;98:13790–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen X, Wang S-C, Cao L-H, Yang G-Q, Li M, Su J-C. Comparison between radial head replacement and open reduction and internal fixation in clinical treatment of unstable, multi-fragmented radial head fractures. Int Orthop. 2011;35:1071–6.

    Article  PubMed  Google Scholar 

  11. Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in RNA-seq: a matter of depth. Genome Res. 2011;21:2213–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen JS, Hung WS, Chan HH, Tsai SJ, Sun HS. In silico identification of oncogenic potential of fyn-related kinase in hepatocellular carcinoma. Bioinformatics. 2013;29:420–7.

    Article  PubMed  Google Scholar 

  13. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41:D808–15.

    Article  CAS  PubMed  Google Scholar 

  14. Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. In Data mining in proteomics. Springer; 201. pp. 291–303.

  15. Da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  CAS  Google Scholar 

  16. Croft D, O’kelly G, Wu G, Haw R, Gillespie M, Matthews L, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 2011;39:D691–7.

    Article  CAS  PubMed  Google Scholar 

  17. Solis LM, Behrens C, Raso MG, Lin HY, Kadara H, Yuan P, et al. Histologic patterns and molecular characteristics of lung adenocarcinoma associated with clinical outcome. Cancer. 2012;118:2889–99.

    Article  CAS  PubMed  Google Scholar 

  18. Li B, Ge Z, Song S, Zhang S, Yan H, Huang B, et al. Decreased expression of SOX7 is correlated with poor prognosis in lung adenocarcinoma patients. Pathol Oncol Res. 2012;18:1039–45.

    Article  CAS  PubMed  Google Scholar 

  19. Nguyen DX, Chiang AC, Zhang XH, Kim JY, Kris MG, Ladanyi M, et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell. 2009;138:51–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Basu M, Roy SS. Wnt/beta-catenin pathway is regulated by PITX2 homeodomain protein and thus contributes to the proliferation of human ovarian adenocarcinoma cell, SKOV-3. J Biol Chem. 2013;288:4355–67.

    Article  CAS  PubMed  Google Scholar 

  21. Barbazán J, Muinelo‐Romay L, Vieito M, Candamio S, Díaz‐López A, Cano A, et al. A multimarker panel for circulating tumor cells detection predicts patient outcome and therapy response in metastatic colorectal cancer. Int J Cancer. 2014.

  22. Yaniv E, Borovsky Z, Mishan-Eisenberg G, Rachmilewitz J. Placental protein 14 regulates selective B cell responses. Cell Immunol. 2003;222:156–63.

    Article  CAS  PubMed  Google Scholar 

  23. Lee CL, Chiu PC, Lam KK, Chan RW, Chu IK, Koistinen R, et al. Glycodelin-A modulates cytokine production of peripheral blood natural killer cells. Fertil Steril. 2010;94:769–71.

    Article  CAS  PubMed  Google Scholar 

  24. Scholz C, Toth B, Brunnhuber R, Rampf E, Weissenbacher T, Santoso L, et al. Glycodelin A induces a tolerogenic phenotype in monocyte-derived dendritic cells in vitro. Am J Reprod Immunol. 2008;60:501–12.

    Article  CAS  PubMed  Google Scholar 

  25. Lee C-L, Lam KK, Koistinen H, Seppala M, Kurpisz M, Fernandez N, et al. Glycodelin-A as a paracrine regulator in early pregnancy. J Reprod Immunol. 2011;90:29–34.

    Article  CAS  PubMed  Google Scholar 

  26. Mishan-Eisenberg G, Borovsky Z, Weber MC, Gazit R, Tykocinski ML, Rachmilewitz J. Differential regulation of Th1/Th2 cytokine responses by placental protein 14. J Immunol. 2004;173:5524–30.

    Article  CAS  PubMed  Google Scholar 

  27. Lee C-L, Chiu PC, Lam KK, Siu S-O, Chu IK, Koistinen R, et al. Differential actions of glycodelin-A on Th-1 and Th-2 cells: a paracrine mechanism that could produce the Th-2 dominant environment during pregnancy. Hum Reprod. 2011;26:517–26.

    Article  CAS  PubMed  Google Scholar 

  28. Kunert-Keil C, Jeschke U, Simms G, Kasper M. Increased expression of glycodelin mRNA and protein in rat lungs during ovalbumin-induced allergic airway inflammation. Histochem Cell Biol. 2009;131:383–90.

    Article  CAS  PubMed  Google Scholar 

  29. Kunert-Keil C, Steinmüller F, Jeschke U, Gredes T, Gedrange T. Immunolocalization of glycodelin in human adenocarcinoma of the lung, squamous cell carcinoma of the lung and lung metastases of colonic adenocarcinoma. Acta Histochem. 2011;113:798–802.

    Article  CAS  PubMed  Google Scholar 

  30. Czyż J. The stage-specific function of gap junctions during tumourigenesis. Mol Cell Biochem. 2008;13:92–102.

    Google Scholar 

  31. Kar R, Batra N, Riquelme MA, Jiang JX. Biological role of connexin intercellular channels and hemichannels. Arch Biochem Biophys. 2012;524:2–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cesen-Cummings K, Fernstrom MJ, Malkinson AM, Ruch RJ. Frequent reduction of gap junctional intercellular communication and connexin43 expression in human and mouse lung carcinoma cells. Carcinogenesis. 1998;19:61–7.

    Article  CAS  PubMed  Google Scholar 

  33. De Oliveira KD, Tedardi MV, Cogliati B, Dagli ML. Higher incidence of lung adenocarcinomas induced by DMBA in connexin 43 heterozygous knockout mice. Biomed Res Int. 2013;2013:618475.

    PubMed  Google Scholar 

  34. Harada K, Nonaka T, Hamada N, Sakurai H, Hasegawa M, Funayama T, et al. Heavy-ion-induced bystander killing of human lung cancer cells: role of gap junctional intercellular communication. Cancer Sci. 2009;100:684–8.

    Article  CAS  PubMed  Google Scholar 

  35. Ozawa H, Mutai H, Matsunaga T, Tokumaru Y, Fujii M, Sakamoto K, et al. Promoted cell proliferation by connexin 30 gene transfection to head-and-neck cancer cell line. Anticancer Res. 2009;29:1981–5.

    CAS  PubMed  Google Scholar 

  36. Princen F, Robe P, Gros D, Jarry-Guichard T, Gielen J, Merville M-P, et al. Rat gap junction connexin-30 inhibits proliferation of glioma cell lines. Carcinogenesis. 2001;22:507–13.

    Article  CAS  PubMed  Google Scholar 

  37. Sentani K, Oue N, Sakamoto N, Anami K, Naito Y, Aoyagi K, et al. Upregulation of connexin 30 in intestinal phenotype gastric cancer and its reduction during tumor progression. Pathobiology. 2010;77:241–8.

    Article  CAS  PubMed  Google Scholar 

  38. Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer. 2008;8:387–98.

    Article  CAS  PubMed  Google Scholar 

  39. Teng Y, Wang XW, Wang YW, Wang J. [Effect of siRNA-mediated beta-catenin gene on Wnt signal pathway in lung adenocarcinoma A549 cell]. Zhonghua Yi Xue Za Zhi. 2010;90:988–92.

    CAS  PubMed  Google Scholar 

  40. Delgado AP, Brandao P, Chapado MJ, Hamid S, Narayanan R. Open reading frames associated with cancer in the dark matter of the human genome. Cancer Genomics Proteomics. 2014;11:201–13.

    PubMed  Google Scholar 

  41. Rennie C, Hulme H, Fisher P, Hall L, Agaba M, Noyes H, et al. A systematic, data-driven approach to the combined analysis of microarray and QTL data. 2010.

  42. Cao Y, He M, Gao Z, Peng Y, Li Y, Li L, et al. Activating hotspot L205R mutation in PRKACA and adrenal Cushing’s syndrome. Science. 2014;344:913–7.

    Article  CAS  PubMed  Google Scholar 

  43. Welch A, Jacobs M, Wingo C, Cain B. Early progress in epigenetic regulation of endothelin pathway genes. Br J Pharmacol. 2013;168:327–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kuzumaki N, Suzuki A, Narita M, Hosoya T, Nagasawa A, Imai S, et al. Multiple analyses of G-protein coupled receptor (GPCR) expression in the development of gefitinib-resistance in transforming non-small-cell lung cancer. PLoS One. 2012;7:e44368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Samanta D, Kaufman J, Carbone DP, Datta PK. Long-term smoking mediated down-regulation of Smad3 induces resistance to carboplatin in non-small cell lung cancer. Neoplasia. 2012;14:644–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (grant No. 81372632).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Lv, J. & Liu, Z. Identification of stage-specific biomarkers in lung adenocarcinoma based on RNA-seq data. Tumor Biol. 36, 6391–6399 (2015). https://doi.org/10.1007/s13277-015-3327-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3327-0

Keywords

Navigation