Skip to main content
Log in

Ultra-high temperature ceramics developments for hypersonic applications

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

Ultra-High Temperature Ceramics are good candidates to fulfil the harsh requirements of hypersonic applications. For more than a decade, the Materials and Structures Department (DMAS) of ONERA has been actively involved in several programmes to develop such materials for different applications (hypersonic flights, propulsion systems...). In our laboratories, monolithic and composite materials have been investigated as well as several processing methods. In this paper, we present for example the ZrB2-SiC and HfB2-SiC compositions with TaSi2 or Y2O3 additions which have been especially studied in the European Projects ATLLAS and ATLLAS II. Assessments of several prototypes in realistic environment are also described. Furthermore, based on these material developments, a specific study on the oxidation behaviour of such monoliths from 1200 °C to 2400 °C with a dedicated test bench using a 2 kW CO2 laser has been carried out (oxidation under air and water vapour atmospheres). Recently, some work on the manufacturing of Ultra-High Temperature Ceramic Matrix Composites has been initiated using slurry infiltration and pyrolysis. The behaviour and properties of these materials are encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ATLLAS:

Aerodynamic and thermal load interactions with lightweight advanced materials for high speed flight

ATLLAS II:

Aero-thermodynamic loads on lightweight advanced structures II

BLOX:

Laser oxidation analysis facility

C/C-SiC:

Carbon fibre reinforced silicon carbide composite

CMC:

Ceramic matrix composites

CTE:

Coefficient of thermal expansion (in 106 °C1)

CVI:

Chemical vapour infiltration

DGA:

Directorate General of Armaments

DLR:

Deutsches Zentrum fur Luft- und Raumfahrt

EDM:

Electrical discharge machining

EDS:

Energy dispersive spectroscopy

ESA-ESTEC:

European Space Agency - European Space Research and Technology Centre

FAST:

Field assisted sintering technology

HP:

Hot pressing

PCS:

Poly-carbo-silane (SiC precursor)

PIP:

Precursor infiltration and pyrolysis

PyC:

Pyrolytic carbon

RMI:

Reactive melt infiltration

SEM:

Scanning electron microscopy

SI:

Slurry infiltration

SIP:

Slurry infiltration and pyrolysis

SPS:

Spark plasma sintering

TT:

Thermal treatment

UHTCs:

Ultra-high temperature ceramics

UHTCMCs:

Ultra-high temperature ceramic matrix composites

WC:

Tungsten carbide

ρ:

Density (in g/cm3)

σf :

Bending flexural strength (in MPa)

εf :

Flexural strain (in %)

d50 :

Median particle size (in µm)

E:

Young’s modulus (in GPa)

Ef :

Flexural modulus (in GPa)

K1C :

Fracture toughness (in MPa.m1/2)

Hv :

Hardness (in GPa)

References

  1. Glass, D.E.: Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles. 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Dayton, Ohio, USA, https://doi.org/10.2514/6.2008-2682 (2008)

  2. Fay, J.A., Riddell, F.R.: Theory of stagnation point heat transfer in dissociated Air. J. Aeron. Sci. 25(2), 73–85 (1958)

    MathSciNet  Google Scholar 

  3. Van Wie, D.M., Drewry Jr., D.G., King, D.E., Hudson, C.M.: The hypersonic environment: required operating conditions and design challenges. J. Mater. Sci. 39, 5915–5924 (2004)

    Google Scholar 

  4. Steelant, J., Dalenbring, M., Kuhn, M. Bouchez, M., Von Wolfersdorf, J.: Achievements obtained within ATLLAS-II on Aero-Thermal Loaded Material Investigations for High-Speed Vehicles. 21th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Xiamen, China, https://doi.org/10.2514/6.2017-2393 (2017)

  5. Monteverde, F., Bellosi, A., Scatteia, L.: Processing and properties of ultra-high temperature ceramics for space applications. Mater. Sci. Eng. A 485, 415–421 (2008)

    Google Scholar 

  6. Squire, T.H., Marschall, J.: Material property requirements for analysis and design of UHTC components in hypersonic applications. J. Eur. Ceram. Soc. 30(11), 2239–2251 (2010)

    Google Scholar 

  7. Opeka, M.M., Talmy, I.G., Zaykoski, J.A.: Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: theoretical considerations and historical experience. J. Mater. Sci. 39, 5887–5904 (2004)

    Google Scholar 

  8. Paul, A., Jayaseelan, D.D., Venugopal, S., Zapata-Solvas, E., Binner, J., Vaidhyanathan, B., Heaton, A., Brown, P., Lee, W.E.: UHTC composites for hypersonic applications. Am. Ceram. Soc. Bul. 91, 22–29 (2012)

    Google Scholar 

  9. Fahrenholtz, W.G., Wuchina, E.J., Lee, W.E., Zhou, Y.: Ultra-high temperature ceramics: materials for extreme environment applications. John Wiley & Sons Inc, ISBN: 978-1-118-70078-5 (2014)

  10. Justin, J.F., Jankowiak, A.: Ultra high temperature ceramics: densification, properties and thermal stability. AerospaceLab, Issue 3: high temperature materials, https://www.aerospacelab-journal.org/sites/www.aerospacelab-journal.org/files/AL3-08.pdf (2011)

  11. Levine, S.R., Opila, E.J., Halbig, M.C., Kiser, J.D., Singh, M., Salem, J.A.: Evaluation of ultra-high temperature ceramics for aeropropulsion use. J. Eur. Ceram. Soc. 22, 2757–2767 (2002)

    Google Scholar 

  12. Han, J., Zhang, X., Meng, S.: Oxidation behaviour of zirconium diboride-silicon carbide at 1800°C. Scripta Mater. 57, 825–828 (2007)

    Google Scholar 

  13. Fahrenholtz, W.G.: Thermodynamic analysis of Zrb2-SiC oxidation: formation of a SiC-depleted region. J. Am. Ceram. Soc. 90, 43–148 (2007)

    Google Scholar 

  14. Monteverde, F., Bellosi, A.: Oxidation of ZrB2-based ceramics in dry air. J. Electrochem. Soc. 150(11), B552–B559 (2003)

    Google Scholar 

  15. Guo, S.Q.: Densification of ZrB2-based composites and their mechanical and physical properties: a review. J. Eur. Ceram. Soc. 29, 995–1011 (2009)

    Google Scholar 

  16. Bellosi, A., Monteverde, F., Sciti, D.: Fast densification of ultra-high-temperature ceramics by spark plasma sintering. Int. J. Appl. Ceram. Technol. 3(1), 32–40 (2006)

    Google Scholar 

  17. Savino, R., De Stefano Fumo, M., Silvestroni, L., Sciti, D.: Arc-jet testing on HfB2 and HfC-based ultra-high temperature ceramic materials. J. Eur. Ceram. Soc. 28, 1899–1907 (2008)

    Google Scholar 

  18. Gasch, M., Johnson, S., Marschall, J.: Thermal conductivity characterization of hafnium diboride-based ultra-high-temperature ceramics. J. Am. Ceram. Soc. 91, 1423–1432 (2008)

    Google Scholar 

  19. Hu, C., Sakka, Y., Tanaka, H., Nishimura, T., Guo, S., Grasso, S.: Microstructure and properties of ZrB2–SiC composites prepared by spark plasma sintering using TaSi2 as sintering additive. J. Eur. Ceram. Soc. 30, 2625–2631 (2010)

    Google Scholar 

  20. Zhang, S., Wang, S., Zhu, Y., Chen, Z.: Fabrication of ZrB2-ZrC-based composites by reactive melt infiltration at relative low temperature. Scr. Mater. 65, 139–142 (2011)

    Google Scholar 

  21. Silvestroni, L., Bellosi, A., Melandri, C., Sciti, D., Liu, J.X., Zhang, G.J.: Microstructure and properties of HfC and TaC-based ceramics obtained by ultrafine powder. J. Eur. Ceram. Soc. 31, 619–627 (2011)

    Google Scholar 

  22. Liu, H.T., Zhang, G.J.: Reactive synthesis of ZrB2-based ultra-high temperature ceramics. J. Korean Cer. Soc. 49, 308–317 (2012)

    Google Scholar 

  23. Zamora, V., Ortiz, A.L., Guiberteau, F., Nygren, M.: Spark-plasma sintering of ZrB2 ultra-high-temperature ceramics at lower temperature via nanoscale crystal refinement. J. Eur. Ceram. Soc. 32, 2529–2536 (2012)

    Google Scholar 

  24. Johnson, S.M.: Ultra-high temperature ceramics UHTCs. Oral presentation, proceedings of the thermal protection system technical interchange meeting (TPS TIM), pp. 1–65, Moffett Field, California, USA, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150022996.pdf (2015)

  25. Silvestroni, L., Stricker, K., Sciti, D., Kleebe, H.J.: Understanding the oxidation behavior of a ZrB2–MoSi2 composite at ultra-high temperatures. Acta Mater. 151, 216–228 (2018)

    Google Scholar 

  26. Silvestroni, L., Sciti, D., Melandri, C., Guicciardi, S.: Toughened ZrB2-based ceramics through SiC whisker or SiC chopped fiber additions. J. Eur. Ceram. Soc. 30, 2155–2164 (2010)

    Google Scholar 

  27. Musa, C., Orrù, R., Sciti, D., Silvestroni, L., Cao, G.: Synthesis, consolidation and characterization of monolithic and SiC whiskers reinforced HfB2 ceramics. J. Eur. Ceram. Soc. 33, 603–614 (2013)

    Google Scholar 

  28. Lahiri, D., Khaleghi, E., Bakshi, S.R., Li, W., Olevsky, E.A., Agarwal, A.: Graphene-induced strengthening in spark plasma sintered tantalum carbide-nanotube composite. Scripta Mater. 68, 285–288 (2013)

    Google Scholar 

  29. Li, L., Wang, Y., Cheng, L., Zhang, L.: Preparation and properties of 2D C/SiC–ZrB2–TaC composites. Ceram. Int. 37, 891–896 (2011)

    Google Scholar 

  30. Paul, A., Venugopal, S., Binner, J., Vaidhyanathan, B., Heaton, A.C.J., Brown, P.M.: UHTC-carbon fibre composites: preparation, oxyacetylene torch testing and characterisation. J. Eur. Ceram. Soc. 33, 423–432 (2013)

    Google Scholar 

  31. Silvestroni, L., Dalle Fabbriche, D., Sciti, D.: Tyranno SA3 fiber-ZrB2 composites. Part I: microstructure and densification. Mater. Des. 65, 1253–1263 (2015)

    Google Scholar 

  32. Kütemeyer, M., Schomer, L., Helmreich, T., Rosiwal, S., Koch, D.: Fabrication of ultrahigh temperature ceramic matrix composites using a reactive melt infiltration process. J. Eur. Ceram. Soc 36, 3647–3655 (2016)

    Google Scholar 

  33. Tang, S., Hu, C.: Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review. J. Mater. Sci. Technol. 33, 117–130 (2017)

    Google Scholar 

  34. Li, Q., Dong, S., Wang, Z., Shi, G.: Fabrication and properties of 3-D Cf/ZrB2-ZrC-SiC composites via polymer infiltration and pyrolysis. Ceram. Int. 39, 5937–5941 (2013)

    Google Scholar 

  35. Zhang, M., Li, K., Shi, X., Tan, W.: Effects of SiC interphase on the mechanical and ablation properties of C/C-ZrC-ZrB2-SiC composites prepared by precursor infiltration and pyrolysis. Mater. Des. 122, 322–329 (2017)

    Google Scholar 

  36. Kütemeyer, M., Helmreich, T., Rosiwal, S., Koch, D.: Influence of zirconium-based alloys on manufacturing and mechanical properties of ultrahigh temperature ceramic matrix composites. Adv. Appl. Ceram. 117, s62–s69 (2018)

    Google Scholar 

  37. Ni, D.-W., Wang, J.-X., Dong, S.-M., Chen, X.-W., Kan, Y.-M., Zhou, H.-J., Gao, L.: Zhang, X-Y: fabrication and properties of Cf /ZrC-SiC-based composites by an improved reactive melt infiltration. J. Am. Ceram. Soc. 101(8), 3253–3258 (2018)

    Google Scholar 

  38. Zoli, L., Vinci, A., Galizia, P., Melandri, C., Sciti, D.: On the thermal shock resistance and mechanical properties of novel unidirectional UHTCMCs for extreme environments. Sci. Rep. 8(9148), 1–9 (2018)

    Google Scholar 

  39. Rubio, V., Binner, J., Cousinet, S., Le Page, G., Ackerman, T., Hussain, A., Brown, P., Dautremont, I.: Materials characterisation and mechanical properties of Cf-UHTC powder composites. J. Eur. Ceram. Soc. 39(4), 813–824 (2019)

    Google Scholar 

  40. Sciti, D., Silvestroni, L., Monteverde, F., Vinci, A., Zoli, L.: Introduction to H2020 project C3HARME - Next generation ceramic composites for combustion harsh environment and space. Advances in applied ceramics, 117, NO.S1, pp s70-s75, https://doi.org/10.1080/17436753.2018.1509822 (2018)

  41. Steelant, J.: Hypersonic technology developments with EU Co-Funded Projects. RTO/AVT/VKI Lecture Series on high speed propulsion: engine design - integration and thermal management edition RTO-EN-AVT-185, von Karman Institute, Rhode-St-Genèse, Belgium, https://www.sto.nato.int/publications/STO%20Educational%20Notes/RTO-ENAVT-185/EN-AVT-185-15.pdf (2010)

  42. Steelant, J.: ATLLAS: Aero-thermal loaded material investigations for high-speed vehicles. 15th AIAA international space planes and hypersonic systems and technologies conference, Dayton, Ohio, USA, 10.2514/6.2008-2582 (2008)

  43. Steelant, J.: Key technologies for hypersonic sustained flight assessed within LAPCAT and ATLLAS Projects. In: Proceedings of the 6th european symposium on aerothermodynamics for space vehicles, Versailles, France, https://www.researchgate.net/publication/260450166_Key_Technologies_for_Hypersonic_Sustained_Flight_Assessed_within_LAPCAT_and_ATLLAS_Projects/link/56bbaf4508ae7be8798be3ee/download (2009)

  44. Steelant, J.: Achievements obtained on Aero-thermal loaded materials for high-speed atmospheric vehicles within ATLLAS. 16th AIAA International space planes and hypersonic systems and technologies conference, Bremen, Germany, https://doi.org/10.2514/6.2009-7225 (2009)

  45. Justin, J.F.: Investigations of high temperature ceramics for sharp leading edges or air intakes of hypersonic vehicles, European conference of aerospace sciences, Versailles, France (2009) CD-ROM ISBN 978-2-930389-47-8

  46. Bouchez, M., Crampon, F., Le Naour, B., Wilhelmi, C., Bubenheim, K., Kuhn, M., Mainzer, B., Riccius, J., Davoine, C., Justin, J.F., Von Wolfersdorf, J., Abdelmoula, M., Villace, V.F., Steelant, J.: Combustor and material integration for high speed aircraft in the European Research Program ATLLAS 2. 19th AIAA International space planes and hypersonic systems and technologies Conference, Atlanta, Georgia, USA, https://doi.org/10.2514/6.2014-2950 (2014)

  47. Bouchez, M., Dufour, E., Le Naour, B., Wilhelmi, C., Bubenheim, K., Kuhn, M., Mainzer, B., Riccius, J., Davoine, C., Justin, J.F., Axtmann, M.,Von Wolfersdorf, J., Spring, S., Villace, V.F., Steelant, J.: Combustor materials research studies for high speed aircraft in the European Program ATLLAS-II. 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Glasgow, Scotland, https://doi.org/10.2514/6.2015-3639 (2015)

  48. Kuhn, M., Bouchez, M., Le Naour, B., Justin, J.F., Van den Eyde, J., Steelant, J.: Ceramic Strut Injection Technologies for High-Speed Flight. 21st AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Xiamen, China, https://doi.org/10.2514/6.2017-2416 (2016)

  49. Guérineau, V.: Mécanismes et cinétiques d’oxydation de matériaux ultraréfractaires sous conditions extrêmes. Ph.D. Dissertation of Pierre et Marie Curie University, https://scanr.enseignementsup-recherche.gouv.fr/publication/these2017PA066646 (2017)

  50. Guérineau, V., Julian-Jankowiak, A.: Oxidation mechanisms under water vapour conditions of ZrB2-SiC and HfB2-SiC based materials up to 2400°C. J. Eur. Ceram. Soc. 38, 421–432 (2018)

    Google Scholar 

  51. Sévin, L., Julian-Jankowiak, A., Justin, J.F., Langlade, C., Bertrand, P., Pelletier, N.: Structural stability of Hafnia-based materials at ultra-high temperature. Mat. Sci. Forum. 941, 1972–1977 (2018). https://doi.org/10.4028/www.scientific.net/msf.941.1972

    Article  Google Scholar 

  52. ASTM E1876-09 – Standard test method for dynamic young’s modulus, shear modulus, and poisson’s ratio by impulse excitation of vibration, ASTM International, West Conshohocken, PA, https://doi.org/10.1520/E1876-09 (2009)

  53. Anstis, G.R., Chantikul, P., Lawn, B.R.: Marshall DB (1981) A critical evaluation of indentation techniques for measuring fracture toughness: I direct crack measurements. J. Am. Ceram. Soc. 64, 534–553 (1981)

    Google Scholar 

  54. Monteverde, F.: Ultra-high temperature HfB2–SiC ceramics consolidated by hot-pressing and spark plasma sintering. J. Alloy. Compd. 428, 197–205 (2007)

    Google Scholar 

  55. Sciti, D., Bonnefont, G., Fantozzi, G., Silvestroni, L.: Spark plasma sintering of HfB2 with low additions of silicides of molybdenum and tantalum. J. Eur. Ceram. Soc. 30, 3253–3258 (2010)

    Google Scholar 

  56. Watts, J., Hilmas, G., Fahrenholtz, W.G.: Mechanical characterization of ZrB2–SiC composites with varying SiC particle sizes. J. Am. Ceram. Soc. 94(12), 4410–4418 (2011)

    Google Scholar 

  57. Zapata-Solvas, E., Jayaseelan, D.D., Lin, H.T., Brown, P., Lee, W.E.: Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering. J. Eur. Ceram. Soc. 33, 1373–1386 (2013)

    Google Scholar 

  58. Wang, Z., Dong, S., Zhang, X., Zhou, H., et al.: Fabrication and properties of Cf/SiC-ZrC composites. J. Am. Ceram. Soc. 91(10), 3434–3436 (2008)

    Google Scholar 

  59. Ni, D.W., Wang, J.X., Dong, S.M., Chen, X.W., et al.: Fabrication and properties of Cf/ZrC-SiC-based composites by an improved reactive melt infiltration. J. Am. Ceram. Soc. 101(8), 3253–3258 (2018)

    Google Scholar 

  60. Gülhan, A., Esser, B.: Arc-heated facilities as a tool to study aerothermodynamic problems of re-entry vehicles. Prog. Astronaut. Aeronaut. 198, 375–403 (2002)

    Google Scholar 

  61. Minard, J.P., Falempin, F.: METHYLE-A new long endurance test facility for dual-mode ramjet combustor technologies. 15th AIAA international space planes and hypersonic systems and technologies conference, Dayton, Ohio, USA, https://doi.org/10.2514/6.2008-2650 (2008)

Download references

Acknowledgements

A part of this work was carried out within two projects investigating high-speed transport: Aerodynamic and Thermal Load Interactions with Lightweight Advanced Materials for High Speed Flight and Aero-Thermodynamic Loads on Lightweight Advanced Structures II. These studies were coordinated by ESA-ESTEC (J. Steelant) and supported by the EU within the 6th and 7th Framework Programmes (Grant AST5-CT-2006-030729, ACP0-GA-2010-263913). Thank you to M. Kuhn (DLR) and M. Bouchez (MBDA) for their collaboration on the development and testing of the hybrid injector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Justin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Justin, JF., Julian-Jankowiak, A., Guérineau, V. et al. Ultra-high temperature ceramics developments for hypersonic applications. CEAS Aeronaut J 11, 651–664 (2020). https://doi.org/10.1007/s13272-020-00445-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-020-00445-y

Keywords

Navigation