Skip to main content

Recent Advances in Ultra-High-Temperature Ceramic Coatings for Various Applications

  • Chapter
  • First Online:
Ceramic Coatings for High-Temperature Environments

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 389 Accesses

Abstract

In the past, the research on high-temperature applications of materials has focussed mainly on SiC and Si3N4 only. The recent advances in propulsion and hypersonic concepts and the related applications have resulted in the search for new categories of materials capable of withstanding very high temperature. The borides, nitrides and carbides of various transition metals can be employed for synthesising ultra-high-temperature ceramic (UHTC) coatings. These materials possess excessively huge melting point along with substantial mechanical properties at extreme temperature, making them suitable for several high-temperature structural and other environmental applications such as in rockets, hypersonic vehicles and engine components. The inherent brittleness as well as extremely feeble shock resistance of ceramic materials can be overcome to a greater extent with the application of ultra-high-temperature ceramic coatings and fibre-reinforced ultra-high-temperature ceramic materials. UHTC coatings are extremely useful as thermal shock absorbers, surface seals and leak minimisers. The carbothermal reduction method is the oldest method employed for the synthesis of UHTCs. However, many other solid-state powders-based and solution-based methods have been employed recently to enhance the unique properties of them. The synthesis methods face a few challenges and require highly refined approaches to synthesis high purity UHTC powders, suitable chemical synthesis reactions and proper selection of precursors delivering excellent chemical yield and less degradation. The microstructural aspects of the synthesised UHTCs can be identified through suitable characterisation techniques including in situ characterisation. Apart from the excellent mechanical properties like excellent elasticity, flexural strength, and fracture toughness, UHTCs must be assessed for its machinability when they are employed for hypersonic and space applications. The thermodynamic properties such as the coefficient of thermal expansion, thermal conductivity and total hemispherical conductivity play a significant role in determining the high-temperature applications of UHTCs. Oxidation resistance at high-temperature environment is the most wanted property of materials especially when they are employed for various space applications. Recent advances show that the use of multilayers of the high-temperature ceramic protective coating reduces oxidation of carbon–carbon (C–C) composite materials and protect them from aerothermal heating at temperatures above 3273 K. Hence, the mechanisms, kinetics and the end products of oxidation mechanisms help the researchers to identify the strengths and weaknesses of the UHTCs when employed for specific applications. This chapter focusses mainly on the recent advances in the synthesis and characterisation techniques of UHTCs giving due importance to their various properties and oxidation mechanisms. The atomistic computational modelling and simulation studies on the impacts of defects on the thermal and mechanical properties of UHTCs are found to be extremely useful to identify their drawbacks prior to their employment in various device configurations. In a similar way, the computational studies on UHTCs by employing thermal shock modelling tools provide useful information about their thermal shock resistance. This chapter also provides a brief overview of the applications of UHTCs along with a description of the properties and applications of the emerging high entropy UHTCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belmonte, M.: Advanced ceramic materials for high temperature applications. Adv. Eng. Mater. 8, 693–770 (2006). https://doi.org/10.1002/adem.200500269

    Article  CAS  Google Scholar 

  2. Eakins, E., Jayaseelan, D.D., Lee, W.E.: Toward oxidation-resistant ZrB2–SiC ultra high temperature ceramics. Metall. Mater. Trans. A. 42, 878–887 (2011). https://doi.org/10.1007/s11661-010-0540-8

    Article  CAS  Google Scholar 

  3. Guo, S.Q.: Densification of ZrB2-based composites and their mechanical and physical properties: a review. J. Eur. Ceram. 29, 995–1011 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.11.008

    Article  CAS  Google Scholar 

  4. Thimmappa, S.K., Golla, B.R.: Oxidation behavior of silicon-based ceramics reinforced diboride UHTC: a review. Silicon 1–26 (2022). https://doi.org/10.1007/s12633-022-01945-8

  5. Ni, D., Cheng, Y., Zhang, J., Liu, J.X., Zou, J., Chen, B., Wu, H., Li, H., Dong, S., Han, J., Zhang, X.: Advances in ultra-high temperature ceramics, composites, and coatings. J. Adv. Ceram. 11, 1–56 (2022). https://doi.org/10.1007/s40145-021-0550-6

    Article  CAS  Google Scholar 

  6. Fahrenholtz, W.G., Hilmas, G.E.: Ultra-high temperature ceramics: materials for extreme environments. Scr. Mater. 129, 94–99 (2017). https://doi.org/10.1016/j.scriptamat.2016.10.018

    Article  CAS  Google Scholar 

  7. Zhang, X., Hu, P., Han, J., Meng, S.: Ablation behavior of ZrB2–SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions. Compos. Sci. Technol. 68, 1718–1726 (2008). https://doi.org/10.1016/j.compscitech.2008.02.009

    Article  CAS  Google Scholar 

  8. Opeka, M.M., Talmy, I.G., Wuchina, E.J., Zaykoski, J.A., Causey, S.J.: Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J. Eur. Ceram. 19, 2405–2414 (1999). https://doi.org/10.1016/S0955-2219(99)00129-6

    Article  CAS  Google Scholar 

  9. Van Wie, D.M., Drewry, D.G., King, D.E., Hudson, C.M.: The hypersonic environment: required operating conditions and design challenges. J. Mater. Sci. 39, 5915–5924 (2004). https://doi.org/10.1023/B:JMSC.0000041688.68135.8b

    Article  Google Scholar 

  10. Wuchina, E., Opila, E., Opeka, M., Fahrenholtz, B., Talmy, I.: UHTCs: ultra-high temperature ceramic materials for extreme environment applications. The Electrochem. Soc. Interface. 16, 30 (2007). https://doi.org/10.1149/2.F04074IF

    Article  CAS  Google Scholar 

  11. Mao, H., Shen, F., Zhang, Y., Wang, J., Cui, K., Wang, H., Lv, T., Fu, T., Tan, T.: Microstructure and mechanical properties of carbide reinforced TiC-based ultra-high temperature ceramics: a review. Coatings 11, 1444 (2021). https://doi.org/10.3390/coatings11121444

    Article  CAS  Google Scholar 

  12. Tului, M., Lionetti, S., Pulci, G., Rocca, E., Valente, T., Marino, G.: Effects of heat treatments on oxidation resistance and mechanical properties of ultra-high temperature ceramic coatings. Surf. Coat. Technol. 202, 4394–4398 (2008). https://doi.org/10.1016/j.surfcoat.2008.04.015

    Article  CAS  Google Scholar 

  13. Tului, M., Lionetti, S., Pulci, G., Marra, F., Tirillò, J., Valente, T.: Zirconium diboride based coatings for thermal protection of re-entry vehicles: effect of MoSi2 addition. Surf. Coat. Technol. 205, 1065–1069 (2010). https://doi.org/10.1016/j.surfcoat.2010.07.120

    Article  CAS  Google Scholar 

  14. Chamberlain, A.L., Fahrenholtz, W.G., Hilmas, G.E., Ellerby, D.T.: High-strength zirconium diboride-based ceramics. J. Am. Ceram. 87, 1170–1172 (2004). https://doi.org/10.1111/j.1551-2916.2004.01170.x

    Article  CAS  Google Scholar 

  15. Carney, C., Paul, A., Venugopal, S., Parthasarathy, T., Binner, J., Katz, A., Brown, P.: Qualitative analysis of hafnium diboride based ultra high temperature ceramics under oxyacetylene torch testing at temperatures above 2100 ℃. J. Eur. Ceram. 34, 1045–1051 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.11.018

    Article  CAS  Google Scholar 

  16. Balbo, A., Sciti, D.: Spark plasma sintering and hot pressing of ZrB2–MoSi2 ultra-high-temperature ceramics. Mater. Sci. Eng.: A 475, 108–112 (2008). https://doi.org/10.1016/j.msea.2007.01.164

  17. Sciti, D., Guicciardi, S., Nygren, M.: Densification and mechanical behavior of HfC and HfB2 fabricated by spark plasma sintering. J. Am. Ceram. 91, 1433–1440 (2008). https://doi.org/10.1111/j.1551-2916.2007.02248.x

    Article  CAS  Google Scholar 

  18. Shen, L., Zhao, Y., Li, Y., Wu, H., Zhu, H., Xie, Z.: Synergistic strengthening of FeCrNiCo high entropy alloys via micro-TiC and nano-SiC particles. Mater. Tod. Commun. 26, 101729 (2021). https://doi.org/10.1016/j.mtcomm.2020.101729

    Article  CAS  Google Scholar 

  19. Gholizadeh, T., Vajdi, M., Rostamzadeh, H.: A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source. Renew. Energ. 148, 31–43 (2020). https://doi.org/10.1016/j.renene.2019.11.154

    Article  Google Scholar 

  20. Cui, K., Zhang, Y., Fu, T., Wang, J., Zhang, X.: Toughening mechanism of mullite matrix composites: a review. Coatings 10, 672 (2020). https://doi.org/10.3390/coatings10070672

    Article  CAS  Google Scholar 

  21. Cui, K., Mao, H., Zhang, Y., Wang, J., Wang, H., Tan, T., Fu, T.: Microstructure, mechanical properties, and reinforcement mechanism of carbide toughened ZrC-based ultra-high temperature ceramics: a review. Compos. Interfaces. 29, 729–748 (2022). https://doi.org/10.1080/09276440.2021.2012409

    Article  CAS  Google Scholar 

  22. Musa, C., Licheri, R., Orrù, R., Cao, G., Balbo, A., Zanotto, F., Mercatelli, L., Sani, E.: Optical characterization of hafnium boride and hafnium carbide-based ceramics for solar energy receivers. Sol. Energy. 169, 111–119 (2018). https://doi.org/10.1016/j.solener.2018.04.036

    Article  CAS  Google Scholar 

  23. Fahrenholtz, W.G.: Thermodynamic analysis of ZrB2–SiC oxidation: formation of a SiC-depleted region. J. Am. Ceram. 90, 143–148 (2007). https://doi.org/10.1111/j.1551-2916.2006.01329.x

    Article  CAS  Google Scholar 

  24. Fahrenholtz, W.G.: The ZrB2 volatility diagram. J. Am. Ceram. 88, 3509–3512 (2005). https://doi.org/10.1111/j.1551-2916.2005.00599.x

    Article  CAS  Google Scholar 

  25. Zeng, Y., Wang, D., Xiong, X., Zhang, X., Withers, P.J., Sun, W., Smith, M., Bai, M., Xiao, P.: Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3000 ℃. Nat. Commun. 8, 15836 (2017). https://doi.org/10.1038/ncomms15836

  26. Zhang, B., Yin, J., Zheng, J., Liu, X., Huang, Z., Dusza, J., Jiang, D.: High temperature ablation behavior of pressureless sintered Ta0.8Hf0.2C-based ultra-high temperature ceramics. J. Eur. Ceram. 40, 1784–1789 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.11.043

  27. Singh, A., Kuppusami, P., Khan, S., Sudha, C., Thirumurugesan, R., Ramaseshan, R., Divakar, R., Mohandas, E., Dash, S.: Influence of nitrogen flow rate on microstructural and nanomechanical properties of Zr–N thin films prepared by pulsed DC magnetron sputtering. Appl. Surf. Sci. 280, 117–123 (2013). https://doi.org/10.1016/j.apsusc.2013.04.107

    Article  CAS  Google Scholar 

  28. Yoshitake, M., Yotsuya, T.Y.T., Ogawa, S.O.S.: Effects of nitrogen pressure and RF power on the properties of reactive magnetron sputtered Zr–N films and an application to a thermistor. Jpn. J. Appl. Phys. 31, 4002 (1992). https://doi.org/10.1143/JJAP.31.4002

    Article  CAS  Google Scholar 

  29. Peters, A.B., Wang, C., Zhang, D., Hernandez, A., Nagle, D.C., Mueller, T., Spicer, J.B.: Reactive laser synthesis of ultra-high-temperature ceramics HfC, ZrC, TiC, HfN, ZrN, and TiN for additive manufacturing. Ceram. Int. 49, 11204–11229 (2023). https://doi.org/10.1016/j.ceramint.2022.11.319

    Article  CAS  Google Scholar 

  30. Buinevich, V.S., Nepapushev, A.A., Moskovskikh, D.O., Trusov, G.V., Kuskov, K.V., Vadchenko, S.G., Rogachev, A.S., Mukasyan, A.S.: Fabrication of ultra-high-temperature nonstoichiometric hafnium carbonitride via combustion synthesis and spark plasma sintering. Ceram. Int. 46, 16068–16073 (2020). https://doi.org/10.1016/j.ceramint.2020.03.158

    Article  CAS  Google Scholar 

  31. Sonber, J.K., Murthy, T.C., Subramanian, C., Hubli, R.C., Suri, A.K.: Processing methods for ultra-high temperature ceramics. In: MAX phases and ultra-high temperature ceramics for extreme environments (180–202). IGI Global (2013). https://doi.org/10.4018/978-1-4666-4066-5.ch006

  32. Brochu, M., Gauntt, B., Zimmerly, T., Ayala, A., Loehman, R.: Fabrication of UHTCs by conversion of dynamically consolidated Zr+ B and Hf+ B powder mixtures. J. Am. Ceram. 91, 2815–2822 (2008). https://doi.org/10.1111/j.1551-2916.2008.02550.x

  33. Anselmi-Tamburini, U., Kodera, Y., Gasch, M., Unuvar, C., Munir, Z.A., Ohyanagi, M., Johnson, S.M.: Synthesis and characterization of dense ultra-high temperature thermal protection materials produced by field activation through spark plasma sintering (SPS): I. Hafnium diboride I. J. Mater. Sci. 41, 3097–3104 (2006). https://doi.org/10.1007/s10853-005-2457-y

    Article  CAS  Google Scholar 

  34. Millet, P., Hwang, T.: Preparation of TiB2 and ZrB2. Influence of a mechano-chemical treatment on the borothermic reduction of titania and zirconia. J. Mater. Sci. 31, 351–355 (1996). https://doi.org/10.1007/BF01139151

  35. Khanra, A.K., Pathak, L.C., Godkhindi, M.M.: Carbothermal synthesis of zirconium diboride (ZrB2) whiskers. Adv. Appl. Ceram. 106, 155–160 (2007). https://doi.org/10.1179/174367607X162019

    Article  CAS  Google Scholar 

  36. Guo, W.M., Zhang, G.J.: Reaction processes and characterization of ZrB2 powder prepared by boro/carbothermal reduction of ZrO2 in vacuum. J. Am. Ceram. 92, 264–267 (2009). https://doi.org/10.1111/j.1551-2916.2008.02836.x

    Article  CAS  Google Scholar 

  37. Khanra, A.K., Pathak, L.C., Mishra, S.K., Godkhindi, M.M.: Sintering of ultrafine zirconium diboride powder prepared by modified SHS technique. Adv. Appl. Ceram. 104, 282–284 (2005). https://doi.org/10.1179/174367605X52077

    Article  CAS  Google Scholar 

  38. Xie, Y., Sanders, T.H., Jr., Speyer, R.F.: Solution-based synthesis of submicrometer ZrB2 and ZrB2–TaB2. J. Am. Ceram. 91, 1469–1474 (2008). https://doi.org/10.1111/j.1551-2916.2008.02288.x

    Article  CAS  Google Scholar 

  39. Devyatkin, S.V.: Electrosynthesis of zirconium boride from cryolite–alumina melts containing zirconium and boron oxides. Russ. J. Electrochem. 37, 1308–1311 (2001). https://doi.org/10.1023/A:1013295931573

    Article  CAS  Google Scholar 

  40. Su, K., Sneddon, L.G.: Polymer-precursor routes to metal borides: synthesis of titanium boride (TiB2) and zirconium boride (ZrB2). Chem. Mater. 3, 10–12 (1991). https://doi.org/10.1021/cm00013a005

    Article  CAS  Google Scholar 

  41. Li, F., Huang, X., Liu, J.X., Zhang, G.J.: Sol–gel derived porous ultra-high temperature ceramics. J. Adv. Ceram. 9, 1–16 (2020). https://doi.org/10.1007/s40145-019-0332-6

    Article  CAS  Google Scholar 

  42. Mashhadi, M., Khaksari, H., Safi, S.: Pressureless sintering behavior and mechanical properties of ZrB2–SiC composites: effect of SiC content and particle size. J. Mater. Res. 4, 416–422 (2015). https://doi.org/10.1016/j.jmrt.2015.02.004

    Article  CAS  Google Scholar 

  43. Mazur, P., Grigoriev, O., Vedel, D., Melakh, L., Shepa, I.: Ultra-high temperature ceramics based on ZrB2 obtained by pressureless sintering with addition of Cr3C2, Mo2C, and WC. J. Eur. Ceram. 42, 4479–4492 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.04.043

    Article  CAS  Google Scholar 

  44. Peters, A.B., Wang, C., Zhang, D., Hernandez, A., Nagle, D.C., Mueller, T., Spicer, J.B.: Reactive laser synthesis of ultra-high-temperature ceramics HfC, ZrC, TiC, HfN, ZrN, and TiN for additive manufacturing. Ceram. Int. 49, 11204–11229 (2022). https://doi.org/10.1016/j.ceramint.2022.11.319

    Article  CAS  Google Scholar 

  45. Hu, P., Gui, K., Hong, W., Zhang, X., Dong, S.: High-performance ZrB2–SiC–Cf composite prepared by low-temperature hot pressing using nanosized ZrB2 powder. J. Eur. Ceram. 37, 2317–2324 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.02.008

  46. Lee, S.J., Kang, E.S., Baek, S.S., Kim, D.K.: Reactive hot pressing and oxidation behavior of Hf-based ultra-high-temperature ceramics. Surf. Rev. Let. 17, 215–221 (2010). https://doi.org/10.1142/S0218625X10013886

    Article  CAS  Google Scholar 

  47. Guillon, O., Gonzalez-Julian, J., Dargatz, B., Kessel, T., Schierning, G., Räthel, J., Herrmann, M.: Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv. Eng. Mater. 16, 830–849 (2014). https://doi.org/10.1002/adem.201300409

    Article  CAS  Google Scholar 

  48. Zhao, X., Zou, J., Ji, W., Wang, A., He, Q., Xiong, Z., Wang, W., Fu, Z.: Processing and mechanical properties of B4C–SiCw ceramics densified by spark plasma sintering. J. Eur. Ceram. 42, 2004–2014 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.01.003

    Article  CAS  Google Scholar 

  49. Vasudevan, N., Ahamed, N.N.N., Pavithra, B., Aravindhan, A., Shanmugavel, B.P.: Effect of Ni addition on the densification of TiC: a comparative study of conventional and microwave sintering. IJRMHM. 87, 105165 (2020). https://doi.org/10.1016/j.ijrmhm.2019.105165

    Article  CAS  Google Scholar 

  50. Sharma, A., Karunakar, D.B.: Development and characterizations of ZrB2–SiC composites sintered through microwave sintering. In: Advances in manufacturing and industrial engineering: select proceedings of ICAPIE 2019 (pp. 815–824). Springer Singapore (2021). https://doi.org/10.1007/978-981-15-8542-5_71

  51. Sun, C.N., Baldridge, T., Gupta, M.C.: Fabrication of ZrB2–Zr cermet using laser sintering technique. Mater. Let. 63, 2529–2531 (2009). https://doi.org/10.1016/j.matlet.2009.08.059

    Article  CAS  Google Scholar 

  52. Zhang, Y., Gai, W., Wang, H., Chen, G., Zhang, P., Li, H.: Influence of crystallite morphology on the ablative behaviors of CVD-TaC coatings prepared on C/C composites beyond 2100 ℃. Corros. Sci. 205, 110426 (2022). https://doi.org/10.1016/j.corsci.2022.110426

    Article  CAS  Google Scholar 

  53. Vignoles, G.L.: Chemical vapor deposition/infiltration processes for ceramic composites. In: Advances in Composites Manufacturing and Process Design, pp. 147–176. Woodhead Publishing (2015). https://doi.org/10.1016/B978-1-78242-307-2.00008-7

  54. Shappirio, J.R., Finnegan, J.J.: Synthesis and properties of some refractory transition metal diboride thin films. Thin Solid Films 107, 81–87 (1983). https://doi.org/10.1016/0040-6090(83)90010-X

    Article  CAS  Google Scholar 

  55. Safavi, M.S., Walsh, F.C., Surmeneva, M.A., Surmenev, R.A., Khalil-Allafi, J.: Electrodeposited hydroxyapatite-based biocoatings: recent progress and future challenges. Coatings 11, 110 (2021). https://doi.org/10.3390/coatings11010110

    Article  CAS  Google Scholar 

  56. Kim, H.S., Kang, B.R., Choi, S.M.: Microstructure and mechanical properties of vacuum plasma sprayed HfC, TiC, and HfC/TiC ultra-high-temperature ceramic coatings. Materials 13, 124 (2019). https://doi.org/10.3390/ma13010124

    Article  CAS  Google Scholar 

  57. Ranjan, A., Islam, A., Pathak, M., Khan, M.K., Keshri, A.K.: Plasma sprayed copper coatings for improved surface and mechanical properties. Vacuum 168, 108834 (2019). https://doi.org/10.1016/j.vacuum.2019.108834

    Article  CAS  Google Scholar 

  58. Mandal, S., Chakraborty, S., Dey, P.: A study of mechanical properties and WEDM machinability of spark plasma sintered ZrB2–B4C ceramic composites. Micron 153, 103198 (2022). https://doi.org/10.1016/j.micron.2021.103198

    Article  CAS  Google Scholar 

  59. Jin, X., Wang, X., Liu, L., Yin, Y., Wang, H., Zhang, B., Fan, X.: Strain rate effect on the mechanical properties of ZrB2–SiC ceramics characterized by nanoindentation. Ceram. Int. 48, 10333–10338 (2022). https://doi.org/10.1016/j.ceramint.2022.01.331

    Article  CAS  Google Scholar 

  60. Jin, X., Yang, J., Sun, Y., Li, P., Hou, C., Zhao, Y., Fan, X.: Fabrication and characterisation of high-performance joints made of ZrB2–SiC ultra-high temperature ceramics. J. Eur. Ceram. 41, 7412–7422 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.08.018

    Article  CAS  Google Scholar 

  61. Zhang, D., Feng, J., Hu, P., Xun, L., Liu, M., Dong, S., Zhang, X.: Enhanced mechanical properties and thermal shock resistance of Cf/ZrB2–SiC composite via an efficient slurry injection combined with vibration-assisted vacuum infiltration. J. Eur. Ceram. 40, 5059–5066 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.07.003

    Article  CAS  Google Scholar 

  62. Zhao, X., Chen, Z., Wang, H., Zhang, Z., Shao, G., Zhang, R., Fan, B., Lu, H., Xu, H., Chen, D.: The influence of additive and temperature on thermal shock resistance of ZrB2 based composites fabricated by spark plasma sintering. Mater. Chem. Phys. 240, 122061 (2020). https://doi.org/10.1016/j.matchemphys.2019.122061

    Article  CAS  Google Scholar 

  63. Fattahi, M., Ershadi, M.N., Vajdi, M., Moghanlou, F.S., Namini, A.S., Asl, M.S.: On the simulation of spark plasma sintered TiB2 ultra high temperature ceramics: a numerical approach. Ceram. Int. 46, 14787–14795 (2020). https://doi.org/10.1016/j.ceramint.2020.03.003

    Article  CAS  Google Scholar 

  64. Bagheri, S.M., Vajdi, M., Moghanlou, F.S., Sakkaki, M., Mohammadi, M., Shokouhimehr, M., Asl, M.S.: Numerical modeling of heat transfer during spark plasma sintering of titanium carbide. Ceram. Int. 46, 7615–7624 (2020). https://doi.org/10.1016/j.ceramint.2019.11.262

    Article  CAS  Google Scholar 

  65. Wang, A., Zhao, X., Huang, M., Zhang, Z., Xie, L.: A quantitative study of flaw/strength response in ultra-high temperature ceramics based on femtosecond laser method. Theor. Appl. Fract. Mech. 110, 102775 (2020). https://doi.org/10.1016/j.tafmec.2020.102775

    Article  CAS  Google Scholar 

  66. Emdadi, A., Watts, J., Fahrenholtz, W.G., Hilmas, G.E., Zaeem, M.A.: Predicting effective fracture toughness of ZrB2-based ultra-high temperature ceramics by phase-field modeling. Mater. Des. 192, 108713 (2020). https://doi.org/10.1016/j.matdes.2020.108713

    Article  CAS  Google Scholar 

  67. Zuccarini, C., Ramachandran, K., Russo, S., Jayakody, Y.C., Jayaseelan, D.D.: Mathematical modeling and simulation of porosity on thermomechanical properties of UHTCs under hypersonic conditions. IJCES. 5, e10168 (2023). https://doi.org/10.1002/ces2.10168

    Article  Google Scholar 

  68. Povolny, S.J., Seidel, G.D., Tallon, C.: Numerical investigation of thermomechanical response of multiscale porous ultra-high temperature ceramics. Ceram. Int. 48, 11502–11517 (2022). https://doi.org/10.1016/j.ceramint.2022.01.006

    Article  CAS  Google Scholar 

  69. Liu, B., Wang, Y., Li, C., Tian, Z., Cheng, L.: Research on the thermal shock simulation of the super high-speed aircraft. MAMS. 1–8 (2022). https://doi.org/10.1080/15376494.2022.2046218

  70. Han, T., Huang, J., Sant, G., Neithalath, N., Kumar, A.: Predicting mechanical properties of ultrahigh temperature ceramics using machine learning. J. Am. Ceram. 105, 6851–6863 (2022). https://doi.org/10.1111/jace.18636

    Article  CAS  Google Scholar 

  71. Li, D., Li, P., Li, W., Li, W., Zhou, K.: Three-dimensional phase-field modeling of temperature-dependent thermal shock-induced fracture in ceramic materials. Eng. Fract. Mech. 268, 108444 (2022). https://doi.org/10.1016/j.engfracmech.2022.108444

    Article  Google Scholar 

  72. Corral, E.L., Loehman, R.E.: Ultra-high-temperature ceramic coatings for oxidation protection of carbon–carbon composites. J. Am. Ceram. 91, 1495–1502 (2008). https://doi.org/10.1111/j.1551-2916.2008.02331.x

    Article  CAS  Google Scholar 

  73. Makurunje, P., Monteverde, F., Sigalas, I.: Self-generating oxidation protective high-temperature glass-ceramic coatings for Cf/C–SiC–TiC–TaC UHTC matrix composites. J. Eur. Ceram. 37, 3227–3239 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.03.068

    Article  CAS  Google Scholar 

  74. Wu, K., Zhou, Q., Cao, J., Qian, Z., Niu, B., Long, D.: Ultrahigh-strength carbon aerogels for high temperature thermal insulation. J. Colloid. Interface. Sci. 609, 667–675 (2022). https://doi.org/10.1016/j.jcis.2021.11.067

    Article  CAS  Google Scholar 

  75. Nagabandi, K., Pujari, A.K., Iyer, D.S.: Thermo-mechanical assessment of gas turbine combustor tile using locally varying thermal barrier coating thickness. Appl. Therm. Eng. 179, 115657 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115657

    Article  Google Scholar 

  76. Zhao, K., Ye, F., Cheng, L., Zhou, J., Wei, Y., Cui, X.: Formation of ultra-high temperature ceramic hollow microspheres as promising lightweight thermal insulation materials via a molten salt-assisted template method. ACS Appl. Mater. Interfaces. 13, 37388–37397 (2021). https://doi.org/10.1021/acsami.1c09662

    Article  CAS  Google Scholar 

  77. Kumar, C.V., Kandasubramanian, B.: Advances in ablative composites of carbon based materials: a review. Ind. Eng. Chem. Res. 58, 22663–22701 (2019). https://doi.org/10.1021/acs.iecr.9b04625

    Article  CAS  Google Scholar 

  78. Gild, J., Zhang, Y., Harrington, T., Jiang, S., Hu, T., Quinn, M.C., Mellor, W.M., Zhou, N., Vecchio, K., Luo, J.: High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 6, 1–10 (2016). https://doi.org/10.1038/srep37946

    Article  CAS  Google Scholar 

  79. Yan, X., Constantin, L., Lu, Y., Silvain, J.F., Nastasi, M., Cui, B.: (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high‐entropy ceramics with low thermal conductivity. J. Am. Ceram. 101, 4486–4491 (2018). https://doi.org/10.1111/jace.15779

  80. Wei, X.F., Liu, J.X., Bao, W., Qin, Y., Li, F., Liang, Y., Xu, F., Zhang, G.J.: High-entropy carbide ceramics with refined microstructure and enhanced thermal conductivity by the addition of graphite. J. Eur. Ceram. 41, 4747–4754 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.03.053

    Article  CAS  Google Scholar 

  81. Backman, L., Gild, J., Luo, J., Opila, E.J.: Part I: theoretical predictions of preferential oxidation in refractory high entropy materials. Acta Mater. 197, 20–27 (2020). https://doi.org/10.1016/j.actamat.2020.07.003

    Article  CAS  Google Scholar 

  82. Castle, E., Csanádi, T., Grasso, S., Dusza, J., Reece, M.: Processing and properties of high-entropy ultra-high temperature carbides. Sci. Rep. 8, 8609 (2018). https://doi.org/10.1038/s41598-018-26827-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Deepthi Jayan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jayan, K.D. (2024). Recent Advances in Ultra-High-Temperature Ceramic Coatings for Various Applications. In: Pakseresht, A., Amirtharaj Mosas, K.K. (eds) Ceramic Coatings for High-Temperature Environments. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-40809-0_13

Download citation

Publish with us

Policies and ethics