Skip to main content
Log in

Piccolo paralogs and orthologs display conserved patterns of alternative splicing within the C2A and C2B domains

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Piccolo is an organizational component of the presynaptic active zone, a specialized region of nerve terminals where synaptic vesicles fuse and release their neurotransmitter contents. Alternative splicing (AS) of the mouse Piccolo gene (PCLO) produces two primary splice isoforms: isoform-1 that includes two C2 domains (C2A and C2B) and isoform-2 with only C2A. Genome-wide association studies have identified variations located in or near the C2A domain of human Piccolo that predispose individuals to affective disorders and in rare cases leads to altered brain development. In zebrafish a genome duplication event led to the generation of PCLO-a and PCLO-b: gene paralogs that display strikingly similar genomic organization with other PCLO orthologs. Given this conservation in genomic structure, it is likely that AS patterns of zebrafish PCLO paralogs are similar to mammalian PCLO. We used a RT-PCR strategy to identify four zebrafish isoforms generated from zebrafish PCLO-a and PCLO-b that are equivalent to mouse Piccolo isoform-1 and isoform-2. Additionally, we identified an exon skipping event that leads to exclusion of a 27 nucleotide exon in both zebrafish Piccolo-a and Piccolo-b. Elimination of this exon in mammalian Piccolo alters the calcium binding property of the C2A domain. We also measured transcriptional levels of mouse and zebrafish Piccolo splice variants and demonstrate that despite similarities in AS, there are quantitative differences in gene expression. Our results indicate that AS of Piccolo is similar across diverse taxa and further support the use of zebrafish to study the role of Piccolo in neurodevelopment and synaptic signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abascal F, Tress ML, Valencia A (2015) The evolutionary fate of alternatively spliced homologous exons after gene duplication. Genome Biol Evol 7:1392–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ackermann F, Waites CL, Garner CC (2015) Presynaptic active zones in invertebrates and vertebrates. EMBO Rep 8:923–938

    Article  Google Scholar 

  • Ahmed MY, Chioza BA, Rajab A, Schmitz-Abe K, Al-Khayat A, Al-Turki S, Baple EL, Patton MA, Al-Memar AY, Hurles ME et al (2015) Loss of PCLO function underlies pontocerebellar hypoplasia type III. Neurology 84:1745–1750

    Article  PubMed  PubMed Central  Google Scholar 

  • Altrock WD, tom Dieck S, Sokolov M, Meyer AC, Sigler A, Brakebusch C, Fassler R, Richter K, Boeckers TM, Potschka H et al (2003) Functional inactivation of a fraction of excitatory synapses in mice deficient for the active zone protein bassoon. Neuron 37:787–800

    Article  CAS  PubMed  Google Scholar 

  • Altschmied J, Delfgaauw J, Wilde B, Duschl J, Bouneau L, Volff JN, Schartl M (2002) Subfunctionalization of duplicate mitf genes associated with differential degeneration of alternative exons in fish. Genetics 161:259–267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aragam N, Wang KS, Pan Y (2011) Genome-wide association analysis of gender differences in major depressive disorder in the Netherlands NESDA and NTR population-based samples. J Affect Disord 133:516–521

    Article  PubMed  Google Scholar 

  • Artamonova II, Gelfand MS (2007) Comparative genomics and evolution of alternative splicing: the pessimists’ science. Chem Rev 107:3407–3430

    Article  CAS  PubMed  Google Scholar 

  • Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, Slobodeniuc V, Kutter C, Watt S, Colak R et al (2012) The evolutionary landscape of alternative splicing in vertebrate species. Science 338:1587–1593

    Article  CAS  PubMed  Google Scholar 

  • Cases-Langhoff C, Voss B, Garner AM, Appeltauer U, Takei K, Kindler S, Veh RW, De Camilli P, Gundelfinger ED, Garner CC (1996) Piccolo, a novel 420 kDa protein associated with the presynaptic cytomatrix. Eur J Cell Biol 69:214–223

    CAS  PubMed  Google Scholar 

  • Chapman ER (2008) How does synaptotagmin trigger neurotransmitter release? Annu Rev Biochem 77:615–641

    Article  CAS  PubMed  Google Scholar 

  • Choi KH, Higgs BW, Wendland JR, Song J, McMahon FJ, Webster MJ (2011) Gene expression and genetic variation data implicate PCLO in bipolar disorder. Biol Psychiatry 69:353–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Easley-Neal C, Fierro J Jr, Buchanan J, Washbourne P (2013) Late recruitment of synapsin to nascent synapses is regulated by Cdk5. Cell Rep 3:1199–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenster SD, Garner CC (2002) Gene structure and genetic localization of the PCLO gene encoding the presynaptic active zone protein Piccolo. Int J Dev Neurosci 20:161–171

    Article  CAS  PubMed  Google Scholar 

  • Fenster SD, Chung WJ, Zhai R, Cases-Langhoff C, Voss B, Garner AM, Kaempf U, Kindler S, Gundelfinger ED, Garner CC (2000) Piccolo, a presynaptic zinc finger protein structurally related to bassoon. Neuron 25:203–214

    Article  CAS  PubMed  Google Scholar 

  • Fenster SD, Kessels MM, Qualmann B, Chung WJ, Nash J, Gundelfinger ED, Garner CC (2003) Interactions between Piccolo and the actin/dynamin-binding protein Abp1 link vesicle endocytosis to presynaptic active zones. J Biol Chem 278:20268–20277

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Chacon R, Konigstorfer A, Gerber SH, Garcia J, Matos MF, Stevens CF, Brose N, Rizo J, Rosenmund C, Sudhof TC (2001) Synaptotagmin I functions as a calcium regulator of release probability. Nature 410:41–49

    Article  CAS  PubMed  Google Scholar 

  • Fraga D, Meulia T, Fenster S (2012) Real-time PCR: unit 10.3. In: Current protocols essential laboratory techniques, 2nd edn. Wiley-Blackwell, New Jersey, pp 10.3.1–10.3.40

  • Furukawa-Hibi Y, Nitta A, Fukumitsu H, Somiya H, Furukawa S, Nabeshima T, Yamada K (2010) Overexpression of piccolo C2A domain induces depression-like behavior in mice. NeuroReport 21:1177–1181

    Article  CAS  PubMed  Google Scholar 

  • Garcia J, Gerber SH, Sugita S, Sudhof TC, Rizo J (2004) A conformational switch in the Piccolo C2A domain regulated by alternative splicing. Nat Struct Mol Biol 11:45–53

    Article  CAS  PubMed  Google Scholar 

  • Gerber SH, Garcia J, Rizo J, Sudhof TC (2001) An unusual C(2)-domain in the active-zone protein piccolo: implications for Ca(2 +) regulation of neurotransmitter release. EMBO J 20:1605–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadley D, Murphy T, Valladares O, Hannenhalli S, Ungar L, Kim J, Bucan M (2006) Patterns of sequence conservation in presynaptic neural genes. Genome Biol 7:R105

    Article  PubMed  PubMed Central  Google Scholar 

  • Hek K, Mulder CL, Luijendijk HJ, van Duijn CM, Hofman A, Uitterlinden AG, Tiemeier H (2010) The PCLO gene and depressive disorders: replication in a population-based study. Hum Mol Genet 19:731–734

    Article  CAS  PubMed  Google Scholar 

  • Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Innan H, Kondrashov F (2010) The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 11:97–108

    Article  CAS  PubMed  Google Scholar 

  • Johnson GV, Jenkins SM (1999) Tau protein in normal and Alzheimer’s disease brain. J Alzheimers Dis 1:307–328

    CAS  PubMed  Google Scholar 

  • Kim S, Ko J, Shin H, Lee JR, Lim C, Han JH, Altrock WD, Garner CC, Gundelfinger ED, Premont RT et al (2003) The GIT family of proteins forms multimers and associates with the presynaptic cytomatrix protein Piccolo. J Biol Chem 278:6291–6300

    Article  CAS  PubMed  Google Scholar 

  • Lambert MJ, Olsen KG, Cooper CD (2014) Gene duplication followed by exon structure divergence substitutes for alternative splicing in zebrafish. Gene 546:271–276

    Article  CAS  PubMed  Google Scholar 

  • Landsverk ML, Weiser DC, Hannibal MC, Kimelman D (2010) Alternative splicing of sept9a and sept9b in zebrafish produces multiple mRNA transcripts expressed throughout development. PLoS One 5:e10712

    Article  PubMed  PubMed Central  Google Scholar 

  • Leal-Ortiz S, Waites CL, Terry-Lorenzo R, Zamorano P, Gundelfinger ED, Garner CC (2008) Piccolo modulation of Synapsin1a dynamics regulates synaptic vesicle exocytosis. J Cell Biol 181:831–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung LC, Wang GX, Mourrain P (2013) Imaging zebrafish neural circuitry from whole brain to synapse. Front Neural Circuits 7:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu J, Peatman E, Wang W, Yang Q, Abernathy J, Wang S, Kucuktas H, Liu Z (2010) Alternative splicing in teleost fish genomes: same-species and cross-species analysis and comparisons. Mol Genet Genomics 283:531–539

    Article  CAS  PubMed  Google Scholar 

  • Madgwick A, Fort P, Hanson PS, Thibault P, Gaudreau MC, Lutfalla G, Moroy T, Abou Elela S, Chaudhry B, Elliott DJ et al (2015) Neural differentiation modulates the vertebrate brain specific splicing program. PLoS One 10:e0125998

    Article  PubMed  PubMed Central  Google Scholar 

  • McIlhatton MA, Burrows JF, Donaghy PG, Chanduloy S, Johnston PG, Russell SE (2001) Genomic organization, complex splicing pattern and expression of a human septin gene on chromosome 17q25.3. Oncogene 20:5930–5939

    Article  CAS  PubMed  Google Scholar 

  • Moussavi Nik SH, Newman M, Ganesan S, Chen M, Martins R, Verdile G, Lardelli M (2014) Hypoxia alters expression of Zebrafish Microtubule-associated protein Tau (mapta, maptb) gene transcripts. BMC Res Notes 7:767

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee K, Yang X, Gerber SH, Kwon HB, Ho A, Castillo PE, Liu X, Sudhof TC (2010) Piccolo and bassoon maintain synaptic vesicle clustering without directly participating in vesicle exocytosis. Proc Natl Acad Sci USA 107:6504–6509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nalefski EA, Falke JJ (1996) The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci 5:2375–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonet ML (2012) A window into domain amplification through Piccolo in teleost fish. G3 (Bethesda) 2:1325–1339

    Article  CAS  Google Scholar 

  • Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415

    Article  CAS  PubMed  Google Scholar 

  • Posner M, Skiba J, Brown M, Liang JO, Nussbaum J, Prior H (2013) Loss of the small heat shock protein alphaA-crystallin does not lead to detectable defects in early zebrafish lens development. Exp Eye Res 116:227–233

    Article  CAS  PubMed  Google Scholar 

  • Rizo J, Sudhof TC (1998) C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem 273:15879–15882

    Article  CAS  PubMed  Google Scholar 

  • Schoch S, Gundelfinger ED (2006) Molecular organization of the presynaptic active zone. Cell Tissue Res 326:379–391

    Article  CAS  PubMed  Google Scholar 

  • Seo S, Takayama K, Uno K, Ohi K, Hashimoto R, Nishizawa D, Ikeda K, Ozaki N, Nabeshima T, Miyamoto Y et al (2013) Functional analysis of deep intronic SNP rs13438494 in intron 24 of PCLO gene. PLoS One 8:e76960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan PF, de Geus EJ, Willemsen G, James MR, Smit JH, Zandbelt T, Arolt V, Baune BT, Blackwood D, Cichon S et al (2009) Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo. Mol Psychiatry 14:359–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao-Cheng JH (2007) Ultrastructural localization of active zone and synaptic vesicle proteins in a preassembled multi-vesicle transport aggregate. Neuroscience 150:575–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • tom Dieck S, Sanmarti-Vila L, Langnaese K, Richter K, Kindler S, Soyke A, Wex H, Smalla KH, Kampf U, Franzer JT et al (1998) Bassoon, a novel zinc-finger CAG/glutamine-repeat protein selectively localized at the active zone of presynaptic nerve terminals. J Cell Biol 142:499–509

    Article  CAS  PubMed  Google Scholar 

  • Treutlein B, Gokce O, Quake SR, Sudhof TC (2014) Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing. Proc Natl Acad Sci USA 111:E1291–E1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullrich B, Ushkaryov YA, Sudhof TC (1995) Cartography of neurexins: more than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. Neuron 14:497–507

    Article  CAS  PubMed  Google Scholar 

  • Uno K, Nishizawa D, Seo S, Takayama K, Matsumura S, Sakai N, Ohi K, Nabeshima T, Hashimoto R, Ozaki N et al (2015) The piccolo intronic single nucleotide polymorphism rs13438494 regulates dopamine and serotonin uptake and shows associations with dependence-like behavior in genomic association study. Curr Mol Med 15:265–274

    Article  CAS  PubMed  Google Scholar 

  • Verbeek EC, Bakker IM, Bevova MR, Bochdanovits Z, Rizzu P, Sondervan D, Willemsen G, de Geus EJ, Smit JH, Penninx BW et al (2012) A fine-mapping study of 7 top scoring genes from a GWAS for major depressive disorder. PLoS One 7:e37384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbeek EC, Bevova MR, Bochdanovits Z, Rizzu P, Bakker IM, Uithuisje T, De Geus EJ, Smit JH, Penninx BW, Boomsma DI et al (2013) Resequencing three candidate genes for major depressive disorder in a dutch cohort. PLoS One 8:e79921

    Article  PubMed  PubMed Central  Google Scholar 

  • Volff JN (2005) Genome evolution and biodiversity in teleost fish. Heredity (Edinb) 94:280–294

    Article  CAS  Google Scholar 

  • Wagh D, Terry-Lorenzo R, Waites CL, Leal-Ortiz SA, Maas C, Reimer RJ, Garner CC (2015) Piccolo directs activity dependent f-actin assembly from presynaptic active zones via daam1. PLoS One 10:e0120093

    Article  PubMed  PubMed Central  Google Scholar 

  • Waites CL, Leal-Ortiz SA, Andlauer TF, Sigrist SJ, Garner CC (2011) Piccolo regulates the dynamic assembly of presynaptic F-actin. J Neurosci 31:14250–14263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waites CL, Leal-Ortiz SA, Okerlund N, Dalke H, Fejtova A, Altrock WD, Gundelfinger ED, Garner CC (2013) Bassoon and Piccolo maintain synapse integrity by regulating protein ubiquitination and degradation. EMBO J 32:954–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Kibschull M, Laue MM, Lichte B, Petrasch-Parwez E, Kilimann MW (1999) Aczonin, a 550-kD putative scaffolding protein of presynaptic active zones, shares homology regions with Rim and Bassoon and binds profilin. J Cell Biol 147:151–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woudstra S, Bochdanovits Z, van Tol MJ, Veltman DJ, Zitman FG, van Buchem MA, van der Wee NJ, Opmeer EM, Demenescu LR, Aleman A et al (2012) Piccolo genotype modulates neural correlates of emotion processing but not executive functioning. Transl Psychiatry 2:e99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woudstra S, van Tol MJ, Bochdanovits Z, van der Wee NJ, Zitman FG, van Buchem MA, Opmeer EM, Aleman A, Penninx BW, Veltman DJ et al (2013) Modulatory effects of the piccolo genotype on emotional memory in health and depression. Wiley, New York

    Google Scholar 

  • Yu WP, Brenner S, Venkatesh B (2003) Duplication, degeneration and subfunctionalization of the nested synapsin-Timp genes in Fugu. Trends Genet 19:180–183

    Article  CAS  PubMed  Google Scholar 

  • Zhai RG, Vardinon-Friedman H, Cases-Langhoff C, Becker B, Gundelfinger ED, Ziv NE, Garner CC (2001) Assembling the presynaptic active zone: a characterization of an active one precursor vesicle. Neuron 29:131–143

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by start-up funds to S. Fenster from Fort Lewis College, an undergraduate research grant from Fort Lewis College to D. Fountain and an undergraduate research grant from Ashland University to L. Knapp. The authors thank Catherine P. Fenster for helpful comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D. Fenster.

Ethics declarations

Conflict of Interests

The authors declare no conflict of interest.

Human and animal rights statement

The respective Animal Use Care Committees at Ashland University and Fort Lewis College approved all animal procedures.

Additional information

David I. Fountain and Lindsey Knapp have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fountain, D.I., Knapp, L., Baugh, K. et al. Piccolo paralogs and orthologs display conserved patterns of alternative splicing within the C2A and C2B domains. Genes Genom 38, 407–419 (2016). https://doi.org/10.1007/s13258-015-0383-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-015-0383-1

Keywords

Navigation