Skip to main content
Log in

Molecular organization of the presynaptic active zone

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The exocytosis of neurotransmitter-filled synaptic vesicles is under tight temporal and spatial control in presynaptic nerve terminals. The fusion of synaptic vesicles is restricted to a specialized area of the presynaptic plasma membrane: the active zone. The protein network that constitutes the cytomatrix at the active zone (CAZ) is involved in the organization of docking and priming of synaptic vesicles and in mediating use-dependent changes in release during short-term and long-term synaptic plasticity. To date, five protein families whose members are highly enriched at active zones (Munc13s, RIMs, ELKS proteins, Piccolo and Bassoon, and the liprins-α), have been characterized. These multidomain proteins are instrumental for the diverse functions performed by the presynaptic active zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altrock WD, tom Dieck S, Sokolov M, Meyer AC, Sigler A, Brakebusch C, Fassler R, Richter K, Boeckers TM, Potschka H, Brandt C, Loscher W, Grimberg D, Dresbach T, Hempelmann A, Hassan H, Balschun D, Frey JU, Brandstatter JH, Garner CC, Rosenmund C, Gundelfinger ED (2003) Functional inactivation of a fraction of excitatory synapses in mice deficient for the active zone protein bassoon. Neuron 37:787–800

    PubMed  CAS  Google Scholar 

  • Angenstein F, Niessen HG, Goldschmidt J, Lison H, Altrock WD, Gundelfinger ED, Scheich H (2006) Manganese-enhanced MRI reveals structural and functional changes in the cortex of bassoon mutant mice. Cereb Cortex (in press) DOI: 10.1093/cercor/bhj121

  • Aravamudan B, Fergestad T, Davis WS, Rodesch CK, Broadie K (1999) Drosophila UNC-13 is essential for synaptic transmission. Nat Neurosci 2:965–971

    PubMed  CAS  Google Scholar 

  • Augustin I, Rosenmund C, Sudhof TC, Brose N (1999) Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400:457–461

    PubMed  CAS  Google Scholar 

  • Basu J, Shen N, Dulubova I, Lu J, Guan R, Guryev O, Grishin NV, Rosenmund C, Rizo J (2005) A minimal domain responsible for Munc13 activity. Nat Struct Mol Biol 12:1017–1018

    PubMed  CAS  Google Scholar 

  • Becherer U, Rettig J (2006) Vesicle pools, docking, priming, and release. Cell Tissue Res (DOI: 10.1007/s00441-006-0243-z)

  • Betz A, Okamoto M, Benseler F, Brose N (1997) Direct interaction of the rat unc-13 homologue Munc13-1 with the N terminus of syntaxin. J Biol Chem 272:2520–2526

    PubMed  CAS  Google Scholar 

  • Betz A, Ashery U, Rickmann M, Augustin I, Neher E, Sudhof TC, Rettig J, Brose N (1998) Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron 21:123–136

    PubMed  CAS  Google Scholar 

  • Betz A, Thakur P, Junge HJ, Ashery U, Rhee JS, Scheuss V, Rosenmund C, Rettig J, Brose N (2001) Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron 30:183–196

    PubMed  CAS  Google Scholar 

  • Bloom FE, Aghajanian GK (1968) Fine structural and cytochemical analysis of the staining of synaptic junctions with phosphotungstic acid. J Ultrastruct Res 22:361–375

    PubMed  CAS  Google Scholar 

  • Bonazzi M, Spano S, Turacchio G, Cericola C, Valente C, Colanzi A, Kweon HS, Hsu VW, Polishchuck EV, Polishchuck RS, Sallese M, Pulvirenti T, Corda D, Luini A (2005) CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nat Cell Biol 7:570–580

    PubMed  CAS  Google Scholar 

  • Brose N, Rosenmund C, Rettig J (2000) Regulation of transmitter release by Unc-13 and its homologues. Curr Opin Neurobiol 10:303–311

    PubMed  CAS  Google Scholar 

  • Calakos N, Schoch S, Sudhof TC, Malenka RC (2004) Multiple roles for the active zone protein RIM1alpha in late stages of neurotransmitter release. Neuron 42:889–896

    PubMed  CAS  Google Scholar 

  • Cases-Langhoff C, Voss B, Garner AM, Appeltauer U, Takei K, Kindler S, Veh RW, De Camilli P, Gundelfinger ED, Garner CC (1996) Piccolo, a novel 420 kDa protein associated with the presynaptic cytomatrix. Eur J Cell Biol 69:214–223

    PubMed  CAS  Google Scholar 

  • Castillo PE, Schoch S, Schmitz F, Sudhof TC, Malenka RC (2002) RIM1alpha is required for presynaptic long-term potentiation. Nature 415:327–330

    PubMed  CAS  Google Scholar 

  • Collins MO, Yu L, Coba MP, Husi H, Campuzano I, Blackstock WP, Choudhary JS, Grant SG (2005) Proteomic analysis of in vivo phosphorylated synaptic proteins. J Biol Chem 280:5972–5982

    PubMed  CAS  Google Scholar 

  • Collins MO, Husi H, Yu L, Brandon JM, Anderson CN, Blackstock WP, Choudhary JS, Grant SG (2006) Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J Neurochem 97(Suppl 1):16–23

    PubMed  CAS  Google Scholar 

  • Coppola T, Magnin-Luthi S, Perret-Menoud V, Gattesco S, Schiavo G, Regazzi R (2001) Direct interaction of the Rab3 effector RIM with Ca2+ channels, SNAP-25, and synaptotagmin. J Biol Chem 276:32756–32762

    PubMed  CAS  Google Scholar 

  • Couteaux R, Pecot-Dechavassine M (1970) Synaptic vesicles and pouches at the level of “active zones” of the neuromuscular junction. C R Acad Sci IV 271:2346–2349

    CAS  Google Scholar 

  • Dai H, Tomchick DR, Garcia J, Sudhof TC, Machius M, Rizo J (2005) Crystal structure of the RIM2 C(2)A-domain at 1.4 Å resolution. Biochemistry 44:13533–13542

    PubMed  CAS  Google Scholar 

  • Deguchi-Tawarada M, Inoue E, Takao-Rikitsu E, Inoue M, Ohtsuka T, Takai Y (2004) CAST2: identification and characterization of a protein structurally related to the presynaptic cytomatrix protein CAST. Genes Cells 9:15–23

    PubMed  CAS  Google Scholar 

  • Deken SL, Vincent R, Hadwiger G, Liu Q, Wang ZW, Nonet ML (2005) Redundant localization mechanisms of RIM and ELKS in Caenorhabditis elegans. J Neurosci 25:5975–5983

    PubMed  CAS  Google Scholar 

  • Dick O, tom Dieck S, Altrock WD, Ammermuller J, Weiler R, Garner CC, Gundelfinger ED, Brandstatter JH (2003) The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron 37:775–786

    PubMed  CAS  Google Scholar 

  • tom Dieck S, Sanmarti-Vila L, Langnaese K, Richter K, Kindler S, Soyke A, Wex H, Smalla KH, Kampf U, Franzer JT, Stumm M, Garner CC, Gundelfinger ED (1998) Bassoon, a novel zinc-finger CAG/glutamine-repeat protein selectively localized at the active zone of presynaptic nerve terminals. J Cell Biol 142:499–509

    Google Scholar 

  • tom Dieck S, Altrock WD, Kessels MM, Qualmann B, Regus H, Brauner D, Fejtova A, Bracko O, Gundelfinger ED, Brandstatter JH (2005) Molecular dissection of the photoreceptor ribbon synapse: physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex. J Cell Biol 168:825–836

    CAS  Google Scholar 

  • Dresbach T, Qualmann B, Kessels MM, Garner CC, Gundelfinger ED (2001) The presynaptic cytomatrix of brain synapses. Cell Mol Life Sci 58:94–116

    PubMed  CAS  Google Scholar 

  • Dresbach T, Hempelmann A, Spilker C, tom Dieck S, Altrock WD, Zuschratter W, Garner CC, Gundelfinger ED (2003) Functional regions of the presynaptic cytomatrix protein bassoon: significance for synaptic targeting and cytomatrix anchoring. Mol Cell Neurosci 23:279–291

    PubMed  CAS  Google Scholar 

  • Dresbach T, Torres V, Wittenmayer N, Altrock WD, Zamorano P, Zuschratter W, Nawrotzki R, Ziv NE, Garner CC, Gundelfinger ED (2006) Assembly of active zone precursor vesicles: obligatory trafficking of presynaptic cytomatrix proteins Bassoon and Piccolo via a trans-Golgi compartment. J Biol Chem 281:6038–6047

    PubMed  CAS  Google Scholar 

  • Ducut Sigala JL, Bottero V, Young DB, Shevchenko A, Mercurio F, Verma IM (2004) Activation of transcription factor NF-kappaB requires ELKS, an IkappaB kinase regulatory subunit. Science 304:1963–1967

    PubMed  CAS  Google Scholar 

  • Dulubova I, Lou X, Lu J, Huryeva I, Alam A, Schneggenburger R, Sudhof TC, Rizo J (2005) A Munc13/RIM/Rab3 tripartite complex: from priming to plasticity? EMBO J 24:2839–2850

    PubMed  CAS  Google Scholar 

  • Fenster SD, Chung WJ, Zhai R, Cases-Langhoff C, Voss B, Garner AM, Kaempf U, Kindler S, Gundelfinger ED, Garner CC (2000) Piccolo, a presynaptic zinc finger protein structurally related to Bassoon. Neuron 25:203–214

    PubMed  CAS  Google Scholar 

  • Fenster SD, Kessels MM, Qualmann B, Chung WJ, Nash J, Gundelfinger ED, Garner CC (2003) Interactions between Piccolo and the actin/dynamin-binding protein Abp1 link vesicle endocytosis to presynaptic active zones. J Biol Chem 278:20268–20277

    PubMed  CAS  Google Scholar 

  • Fujimoto K, Shibasaki T, Yokoi N, Kashima Y, Matsumoto M, Sasaki T, Tajima N, Iwanaga T, Seino S (2002) Piccolo, a Ca2+ sensor in pancreatic beta-cells. Involvement of cAMP-GEFII.Rim2.Piccolo complex in cAMP-dependent exocytosis. J Biol Chem 277:50497–50502

    PubMed  CAS  Google Scholar 

  • Furusawa T, Moribe H, Kondoh H, Higashi Y (1999) Identification of CtBP1 and CtBP2 as corepressors of zinc finger-homeodomain factor deltaEF1. Mol Cell Biol 19:8581–8590

    PubMed  CAS  Google Scholar 

  • Gallop JL, Butler PJ, McMahon HT (2005) Endophilin and CtBP/BARS are not acyl transferases in endocytosis or Golgi fission. Nature 438:675–678

    PubMed  CAS  Google Scholar 

  • Garcia J, Gerber SH, Sugita S, Sudhof TC, Rizo J (2004) A conformational switch in the Piccolo C2A domain regulated by alternative splicing. Nat Struct Mol Biol 11:45–53

    PubMed  CAS  Google Scholar 

  • Garcia-Junco-Clemente P, Linares-Clemente P, Fernandez-Chacon R (2005) Active zones for presynaptic plasticity in the brain. Mol Psychiatry 10:185–200

    PubMed  CAS  Google Scholar 

  • Garner CC, Zhai RG, Gundelfinger ED, Ziv NE (2002) Molecular mechanisms of CNS synaptogenesis. Trends Neurosci 25:243–251

    PubMed  CAS  Google Scholar 

  • Gerber SH, Garcia J, Rizo J, Sudhof TC (2001) An unusual C(2)-domain in the active-zone protein Piccolo: implications for Ca(2+) regulation of neurotransmitter release. EMBO J 20:1605–1619

    PubMed  CAS  Google Scholar 

  • Gray EG (1963) Electron microscopy of presynaptic organelles of the spinal cord. J Anat 97:101–106

    PubMed  CAS  Google Scholar 

  • Gundelfinger ED, tom Dieck S (2000) Molecular organization of excitatory chemical synapses in the mammalian brain. Naturwissenschaften 87:513–523

    PubMed  CAS  Google Scholar 

  • Gundelfinger ED, Kessels MM, Qualmann B (2003) Temporal and spatial coordination of exocytosis and endocytosis. Nat Rev Mol Cell Biol 4:127–139

    PubMed  CAS  Google Scholar 

  • Harlow ML, Ress D, Stoschek A, Marshall RM, McMahan UJ (2001) The architecture of active zone material at the frog’s neuromuscular junction. Nature 409:479–484

    PubMed  CAS  Google Scholar 

  • Hibino H, Pironkova R, Onwumere O, Vologodskaia M, Hudspeth AJ, Lesage F (2002) RIM binding proteins (RBPs) couple Rab3-interacting molecules (RIMs) to voltage-gated Ca(2+) channels.Neuron 34:411–423

    PubMed  CAS  Google Scholar 

  • Hidalgo Carcedo C, Bonazzi M, Spano S, Turacchio G, Colanzi A, Luini A, Corda D (2004) Mitotic Golgi partitioning is driven by the membrane-fissioning protein CtBP3/BARS. Science 305:93–96

    PubMed  Google Scholar 

  • Huang YY, Zakharenko SS, Schoch S, Kaeser PS, Janz R, Sudhof TC, Siegelbaum SA, Kandel ER (2005) Genetic evidence for a protein-kinase-A-mediated presynaptic component in NMDA-receptor-dependent forms of long-term synaptic potentiation. Proc Natl Acad Sci USA 102:9365–9370

    PubMed  CAS  Google Scholar 

  • Inoue E, Mochida S, Takagi H, Higa S, Deguchi-Tawarada M, Takao-Rikitsu E, Inoue M, Yao I, Takeuchi K, Kitajima I, Setou M, Ohtsuka T, Takai Y (2006) SAD: a presynaptic kinase associated with synaptic vesicles and the active zone cytomatrix that regulates neurotransmitter release. Neuron 50:261–275

    PubMed  CAS  Google Scholar 

  • Johnson S, Halford S, Morris AG, Patel RJ, Wilkie SE, Hardcastle AJ, Moore AT, Zhang K, Hunt DM (2003) Genomic organisation and alternative splicing of human RIM1, a gene implicated in autosomal dominant cone-rod dystrophy (CORD7). Genomics 81:304–314

    PubMed  CAS  Google Scholar 

  • Junge HJ, Rhee JS, Jahn O, Varoqueaux F, Spiess J, Waxham MN, Rosenmund C, Brose N (2004) Calmodulin and Munc13 form a Ca2+ sensor/effector complex that controls short-term synaptic plasticity. Cell 118:389–401

    PubMed  CAS  Google Scholar 

  • Kaeser PS, Sudhof TC (2005) RIM function in short- and long-term synaptic plasticity. Biochem Soc Trans 33:1345–1349

    PubMed  CAS  Google Scholar 

  • Kaufmann N, DeProto J, Ranjan R, Wan H, Van Vactor D (2002) Drosophila liprin-alpha and the receptor phosphatase Dlar control synapse morphogenesis. Neuron 34:27–38

    PubMed  CAS  Google Scholar 

  • Khimich D, Nouvian R, Pujol R, tom Dieck S, Egner A, Gundelfinger ED, Moser T (2005) Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature 434:889–894

    PubMed  CAS  Google Scholar 

  • Kim S, Ko J, Shin H, Lee JR, Lim C, Han JH, Altrock WD, Garner CC, Gundelfinger ED, Premont RT, Kaang BK, Kim E (2003) The GIT family of proteins forms multimers and associates with the presynaptic cytomatrix protein Piccolo. J Biol Chem 278:6291–6300

    PubMed  CAS  Google Scholar 

  • Kittel RJ, Wichmann C, Rasse TM, Fouquet W, Schmidt M, Schmid A, Wagh DA, Pawlu C, Kellner RR, Willig KI, Hell SW, Buchner E, Heckmann M, Sigrist SJ (2006) Bruchpilot promotes active zone assembly, Ca2+-channel clustering, and vesicle release. Science 312:1051–1054

    PubMed  CAS  Google Scholar 

  • Ko J, Kim S, Valtschanoff JG, Shin H, Lee JR, Sheng M, Premont RT, Weinberg RJ, Kim E (2003a) Interaction between liprin-alpha and GIT1 is required for AMPA receptor targeting. J Neurosci 23:1667–1677

    PubMed  CAS  Google Scholar 

  • Ko J, Na M, Kim S, Lee JR, Kim E (2003b) Interaction of the ERC family of RIM-binding proteins with the liprin-alpha family of multidomain proteins. J Biol Chem 278:42377–42385

    PubMed  CAS  Google Scholar 

  • Ko J, Yoon C, Piccoli G, Chung HS, Kim K, Lee JR, Lee HW, Kim H, Sala C, Kim E (2006) Organization of the presynaptic active zone by ERC2/CAST1-dependent clustering of the tandem PDZ protein syntenin-1. J Neurosci 26:963–970

    PubMed  CAS  Google Scholar 

  • Koch H, Hofmann K, Brose N (2000) Definition of Munc13-homology-domains and characterization of a novel ubiquitously expressed Munc13 isoform. Biochem J 349:247–253

    PubMed  CAS  Google Scholar 

  • Kohn RE, Duerr JS, McManus JR, Duke A, Rakow TL, Maruyama H, Moulder G, Maruyama IN, Barstead RJ, Rand JB (2000) Expression of multiple UNC-13 proteins in the Caenorhabditis elegans nervous system. Mol Biol Cell 11:3441–3452

    PubMed  CAS  Google Scholar 

  • Koushika SP, Richmond JE, Hadwiger G, Weimer RM, Jorgensen EM, Nonet ML (2001) A post-docking role for active zone protein Rim. Nat Neurosci 4:997–1005

    PubMed  CAS  Google Scholar 

  • Landis DM (1988) Membrane and cytoplasmic structure at synaptic junctions in the mammalian central nervous system. J Electron Microsc Tech 10:129–151

    PubMed  CAS  Google Scholar 

  • Landis DM, Hall AK, Weinstein LA, Reese TS (1988) The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron 1:201–209

    PubMed  CAS  Google Scholar 

  • Lonart G, Schoch S, Kaeser PS, Larkin CJ, Sudhof TC, Linden DJ (2003) Phosphorylation of RIM1alpha by PKA triggers presynaptic long-term potentiation at cerebellar parallel fiber synapses. Cell 115:49–60

    PubMed  CAS  Google Scholar 

  • Lu J, Li H, Wang Y, Sudhof TC, Rizo J (2005) Solution structure of the RIM1alpha PDZ domain in complex with an ELKS1b C-terminal peptide. J Mol Biol 352:455–466

    Article  PubMed  CAS  Google Scholar 

  • Madison JM, Nurrish S, Kaplan JM (2005) UNC-13 interaction with syntaxin is required for synaptic transmission. Curr Biol 15:2236–2242

    PubMed  CAS  Google Scholar 

  • Monier S, Jollivet F, Janoueix-Lerosey I, Johannes L, Goud B (2002) Characterization of novel Rab6-interacting proteins involved in endosome-to-TGN transport. Traffic 3:289–297

    PubMed  Google Scholar 

  • Nakata T, Yokota T, Emi M, Minami S (2002) Differential expression of multiple isoforms of the ELKS mRNAs involved in a papillary thyroid carcinoma. Genes Chromosomes Cancer 35:30–37

    PubMed  CAS  Google Scholar 

  • Neeb A, Koch H, Schurmann A, Brose N (1999) Direct interaction between the ARF-specific guanine nucleotide exchange factor msec7-1 and presynaptic Munc13-1. Eur J Cell Biol 78:533–538

    PubMed  CAS  Google Scholar 

  • Ohtsuka T, Takao-Rikitsu E, Inoue E, Inoue M, Takeuchi M, Matsubara K, Deguchi-Tawarada M, Satoh K, Morimoto K, Nakanishi H, Takai Y (2002) Cast: a novel protein of the cytomatrix at the active zone of synapses that forms a ternary complex with RIM1 and Munc13-1. J Cell Biol 158:577–590

    PubMed  CAS  Google Scholar 

  • Olsen O, Moore KA, Fukata M, Kazuta T, Trinidad JC, Kauer FW, Streuli M, Misawa H, Burlingame AL, Nicoll RA, Bredt DS (2005) Neurotransmitter release regulated by a MALS-liprin-alpha presynaptic complex. J Cell Biol 170:1127–1134

    PubMed  CAS  Google Scholar 

  • Orita S, Naito A, Sakaguchi G, Maeda M, Igarashi H, Sasaki T, Takai Y (1997) Physical and functional interactions of Doc2 and Munc13 in Ca2+-dependent exocytotic machinery. J Biol Chem 272:16081–16084

    PubMed  CAS  Google Scholar 

  • Ozaki N, Shibasaki T, Kashima Y, Miki T, Takahashi K, Ueno H, Sunaga Y, Yano H, Matsuura Y, Iwanaga T, Takai Y, Seino S (2000) cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2:805–811

    PubMed  CAS  Google Scholar 

  • Pfenninger K, Akert K, Moor H, Sandri C (1972) The fine structure of freeze-fractured presynaptic membranes. J Neurocytol 1:129–149

    PubMed  CAS  Google Scholar 

  • Phillips GR, Huang JK, Wang Y, Tanaka H, Shapiro L, Zhang W, Shan WS, Arndt K, Frank M, Gordon RE, Gawinowicz MA, Zhao Y, Colman DR (2001) The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron 32:63–77

    PubMed  CAS  Google Scholar 

  • Powell CM, Schoch S, Monteggia L, Barrot M, Matos MF, Feldmann N, Sudhof TC, Nestler EJ (2004) The presynaptic active zone protein RIM1alpha is critical for normal learning and memory. Neuron 42:143–153

    PubMed  CAS  Google Scholar 

  • Rhee JS, Betz A, Pyott S, Reim K, Varoqueaux F, Augustin I, Hesse D, Sudhof TC, Takahashi M, Rosenmund C, Brose N (2002) Beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 108:121–133

    PubMed  CAS  Google Scholar 

  • Richmond JE, Davis WS, Jorgensen EM (1999) UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat Neurosci 2:959–964

    PubMed  CAS  Google Scholar 

  • Roessel P van, Elliott DA, Robinson IM, Prokop A, Brand AH (2004) Independent regulation of synaptic size and activity by the anaphase-promoting complex. Cell 119:707–718

    PubMed  Google Scholar 

  • Rosenmund C, Sigler A, Augustin I, Reim K, Brose N, Rhee JS (2002) Differential control of vesicle priming and short-term plasticity by Munc13 isoforms. Neuron 33:411–424

    PubMed  CAS  Google Scholar 

  • Rosenmund C, Rettig J, Brose N (2003) Molecular mechanisms of active zone function. Curr Opin Neurobiol 13:509–519

    PubMed  CAS  Google Scholar 

  • Sakaguchi G, Orita S, Naito A, Maeda M, Igarashi H, Sasaki T, Takai Y (1998) A novel brain-specific isoform of beta spectrin: isolation and its interaction with Munc13. Biochem Biophys Res Commun 248:846–851

    PubMed  CAS  Google Scholar 

  • Schmitz F, Konigstorfer A, Sudhof TC (2000) RIBEYE, a component of synaptic ribbons: a protein’s journey through evolution provides insight into synaptic ribbon function. Neuron 28:857–872

    PubMed  CAS  Google Scholar 

  • Schoch S, Castillo PE, Jo T, Mukherjee K, Geppert M, Wang Y, Schmitz F, Malenka RC, Sudhof TC (2002) RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415:321–326

    PubMed  CAS  Google Scholar 

  • Serra-Pages C, Kedersha NL, Fazikas L, Medley Q, Debant A, Streuli M (1995) The LAR transmembrane protein tyrosine phosphatase and a coiled-coil LAR-interacting protein co-localize at focal adhesions. EMBO J 14:2827–2838

    PubMed  CAS  Google Scholar 

  • Serra-Pages C, Medley QG, Tang M, Hart A, Streuli M (1998) Liprins, a family of LAR transmembrane protein-tyrosine phosphatase-interacting proteins. J Biol Chem 273:15611–15620

    PubMed  CAS  Google Scholar 

  • Serra-Pages C, Streuli M, Medley QG (2005) Liprin phosphorylation regulates binding to LAR: evidence for Liprin autophosphorylation. Biochemistry 44:15715–15724

    PubMed  CAS  Google Scholar 

  • Shibasaki T, Sunaga Y, Fujimoto K, Kashima Y, Seino S (2004) Interaction of ATP sensor, cAMP sensor, Ca2+ sensor, and voltage-dependent Ca2+ channel in insulin granule exocytosis. J Biol Chem 279:7956–7961

    PubMed  CAS  Google Scholar 

  • Shin H, Wyszynski M, Huh KH, Valtschanoff JG, Lee JR, Ko J, Streuli M, Weinberg RJ, Sheng M, Kim E (2003) Association of the kinesin motor KIF1A with the multimodular protein liprin-alpha. J Biol Chem 278:11393–11401

    PubMed  CAS  Google Scholar 

  • Simsek-Duran F, Linden DJ, Lonart G (2004) Adapter protein 14-3-3 is required for a presynaptic form of LTP in the cerebellum. Nat Neurosci 7:1296–1298

    PubMed  CAS  Google Scholar 

  • Stevens DR, Wu ZX, Matti U, Junge HJ, Schirra C, Becherer U, Wojcik SM, Brose N, Rettig J (2005) Identification of the minimal protein domain required for priming activity of Munc13-1. Curr Biol 15:2243–2248

    PubMed  CAS  Google Scholar 

  • Sudhof TC (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375:645–653

    PubMed  CAS  Google Scholar 

  • Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    PubMed  Google Scholar 

  • Sun L, Bittner MA, Holz RW (2003) Rim, a component of the presynaptic active zone and modulator of exocytosis, binds 14-3-3 through its N terminus. J Biol Chem 278:38301–38309

    PubMed  CAS  Google Scholar 

  • Takao-Rikitsu E, Mochida S, Inoue E, Deguchi-Tawarada M, Inoue M, Ohtsuka T, Takai Y (2004) Physical and functional interaction of the active zone proteins, CAST, RIM1, and Bassoon, in neurotransmitter release. J Cell Biol 164:301–311

    PubMed  CAS  Google Scholar 

  • Turner KM, Burgoyne RD, Morgan A (1999) Protein phosphorylation and the regulation of synaptic membrane traffic. Trends Neurosci 22:459–464

    PubMed  CAS  Google Scholar 

  • Varoqueaux F, Sigler A, Rhee JS, Brose N, Enk C, Reim K, Rosenmund C (2002) Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc Natl Acad Sci USA 99:9037–9042

    PubMed  CAS  Google Scholar 

  • Varoqueaux F, Sons MS, Plomp JJ, Brose N (2005) Aberrant morphology and residual transmitter release at the munc13-deficient mouse neuromuscular synapse. Mol Cell Biol 25:5973–5984

    PubMed  CAS  Google Scholar 

  • Vosseller K, Trinidad JC, Chalkley RJ, Specht CG, Thalhammer A, Lynn AJ, Snedecor JO, Guan S, Medzihradszky KF, Maltby DA, Schoepfer R, Burlingame AL (2006) O-linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry. Mol Cell Proteomics 5:923–934

    PubMed  CAS  Google Scholar 

  • Wagh DA, Rasse TM, Asan E, Hofbauer A, Schwenkert I, Durrbeck H, Buchner S, Dabauvalle MC, Schmidt M, Qin G, Wichmann C, Kittel R, Sigrist SJ, Buchner E (2006) Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49:833–844

    PubMed  CAS  Google Scholar 

  • Wang X, Kibschull M, Laue MM, Lichte B, Petrasch-Parwez E, Kilimann MW (1999) Aczonin, a 550-kD putative scaffolding protein of presynaptic active zones, shares homology regions with Rim and Bassoon and binds profilin. J Cell Biol 147:151–162

    PubMed  CAS  Google Scholar 

  • Wang X, Hu B, Zimmermann B, Kilimann MW (2001) Rim1 and rabphilin-3 bind Rab3-GTP by composite determinants partially related through N-terminal alpha-helix motifs. J Biol Chem 276:32480–32488

    PubMed  CAS  Google Scholar 

  • Wang Y, Sudhof TC (2003) Genomic definition of RIM proteins: evolutionary amplification of a family of synaptic regulatory proteins. Genomics 81:126–137

    PubMed  CAS  Google Scholar 

  • Wang Y, Okamoto M, Schmitz F, Hofmann K, Sudhof TC (1997) Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388:593–598

    PubMed  CAS  Google Scholar 

  • Wang Y, Sugita S, Sudhof TC (2000) The RIM/NIM family of neuronal C2 domain proteins. Interactions with Rab3 and a new class of Src homology 3 domain proteins. J Biol Chem 275:20033–20044

    PubMed  CAS  Google Scholar 

  • Wang Y, Liu X, Biederer T, Sudhof TC (2002) A family of RIM-binding proteins regulated by alternative splicing: implications for the genesis of synaptic active zones. Proc Natl Acad Sci USA 99:14464–14469

    PubMed  CAS  Google Scholar 

  • Weigert R, Silletta MG, Spano S, Turacchio G, Cericola C, Colanzi A, Senatore S, Mancini R, Polishchuk EV, Salmona M, Facchiano F, Burger KN, Mironov A, Luini A, Corda D (1999) CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 402:429–433

    PubMed  CAS  Google Scholar 

  • Wyszynski M, Kim E, Dunah AW, Passafaro M, Valtschanoff JG, Serra-Pages C, Streuli M, Weinberg RJ, Sheng M (2002) Interaction between GRIP and liprin-alpha/SYD2 is required for AMPA receptor targeting. Neuron 34:39–52

    PubMed  CAS  Google Scholar 

  • Yokota T, Nakata T, Minami S, Inazawa J, Emi M (2000) Genomic organization and chromosomal mapping of ELKS, a gene rearranged in a papillary thyroid carcinoma. J Hum Genet 45:6–11

    PubMed  CAS  Google Scholar 

  • Zhen M, Jin Y (1999) The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature 401:371–375

    PubMed  CAS  Google Scholar 

  • Ziv NE, Garner CC (2004) Cellular and molecular mechanisms of presynaptic assembly. Nat Rev Neurosci 5:385–399

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of our laboratories and T.C. Südhof for discussions and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Schoch.

Additional information

In our laboratories, work on the molecular organization of the active zone is supported by the Deutsche Forschungsgemeinschaft (Emmy Noether Fellowship, SFB645/A4 to S.S., SFB426/A1 to E.D.G.), the European Commission (SynScaff Consortium), the Land Sachsen-Anhalt (LSA-N2), the Fonds der Chemischen Industrie, and a Max Planck Research Award by the Max Planck Society, the Alexander von Humboldt Society, and local funding (BONFOR to S.S.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoch, S., Gundelfinger, E.D. Molecular organization of the presynaptic active zone. Cell Tissue Res 326, 379–391 (2006). https://doi.org/10.1007/s00441-006-0244-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0244-y

Keywords

Navigation