Skip to main content
Log in

Risk Assessment for Toxicity Experiments with Discrete and Continuous Outcomes: A Bayesian Nonparametric Approach

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

We present a Bayesian nonparametric modeling approach to inference and risk assessment for developmental toxicity studies. The primary objective of these studies is to determine the relationship between the level of exposure to a toxic chemical and the probability of a physiological or biochemical response. We consider a general data setting involving clustered categorical responses on the number of prenatal deaths, the number of live pups, and the number of live malformed pups from each laboratory animal, as well as continuous outcomes (e.g., body weight) on each of the live pups. We utilize mixture modeling to provide flexibility in the functional form of both the multivariate response distribution and the various dose–response curves of interest. The nonparametric model is built from a structured mixture kernel and a dose-dependent Dirichlet process prior for the mixing distribution. The modeling framework enables general inference for the implied dose–response relationships and for dose-dependent correlations between the different endpoints, features which provide practical advances relative to traditional parametric models for developmental toxicology. We use data from a toxicity experiment that investigated the toxic effects of an organic solvent (diethylene glycol dimethyl ether) to demonstrate the range of inferences obtained from the nonparametric mixture model, including comparison with a parametric hierarchical model.

Supplementary materials accompanying this paper appear on-line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barrientos, A. F., Jara, A. & Quintana, F. A. (2012). On the support of MacEachern’s dependent Dirichlet processes and extensions. Bayesian Analysis 7, 277–310.

    Article  MathSciNet  MATH  Google Scholar 

  • Calabrese, E. J. (2005). Paradigm lost, paradigm found: The re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environmental Pollution 138, 378–411.

    Article  Google Scholar 

  • Catalano, P. & Ryan, L. (1992). Bivariate latent variable models for clustered discrete and continuous outcomes. Journal of the American Statistical Association 87, 651–658.

    Article  Google Scholar 

  • DeIorio, M., Johnson, W. O., Müller, P. & Rosner, G. L. (2009). Bayesian nonparametric non-proportional hazards survival modelling. Biometrics 63, 762–771.

    Article  Google Scholar 

  • DeIorio, M., Müller, P., Rosner, G. & MacEachern, S. (2004). An ANOVA model for dependent random measures. Journal of the American Statistical Association 99, 205–215.

    Article  MathSciNet  MATH  Google Scholar 

  • DiLucca, M., Guglielmi, A., Müller, P. & Quintana, F. (2013). A simple class of Bayesian nonparametric autoregressive models. Bayesian Analysis 8, 63–88.

    Article  MathSciNet  Google Scholar 

  • Dominici, F. & Parmigiani, G. (2001). Bayesian semiparametric analysis of developmental toxicology data. Biometrics 57, 150–157.

    Article  MathSciNet  MATH  Google Scholar 

  • Dunson, D., Chen, Z. & Harry, J. (2003). A Bayesian approach for joint modeling of cluster size and subunit-specific outcomes. Biometrics 59, 521–530.

    Article  MathSciNet  MATH  Google Scholar 

  • Faes, C., Geys, H., Aerts, M. & Molenberghs, G. (2006). A hierarchical modeling approach for risk assessment in developmental toxicity studies. Computational Statistics & Data Analysis 51, 1848–1861.

    Article  MathSciNet  MATH  Google Scholar 

  • Fronczyk, K. & Kottas, A. (2014). A Bayesian nonparametric modeling framework for developmental toxicity studies (with discussion). Journal of the American Statistical Association 109, 873–893.

    Article  MathSciNet  MATH  Google Scholar 

  • Gelfand, A. & Ghosh, S. (1998). Model choice: A minimum posterior predictive loss approach. Biometrika 85, 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  • Gelfand, A., Kottas, A. & MacEachern, S. (2005). Bayesian nonparametric spatial modeling with Dirichlet process mixing. Journal of the American Statistical Association 100, 1021–1035.

    Article  MathSciNet  MATH  Google Scholar 

  • Gueorguieva, R. & Agresti, A. (2001). A correlated probit model for joint modeling of clustered binary and continuous responses. Journal of the American Statistical Association 96, 1102–1112.

    Article  MathSciNet  MATH  Google Scholar 

  • Guindani, M. & Gelfand, A. E. (2006). Smoothness properties and gradient analysis under spatial Dirichlet process models. Methodology and Computing in Applied Probability 8, 159–189.

    Article  MathSciNet  MATH  Google Scholar 

  • Hwang, B. S. & Pennell, M. L. (2013). Semiparametric Bayesian joint modeling of a binary and continuous outcome with applications in toxicological risk assessment. Statistics in Medicine 33, 1162–1175.

    Article  MathSciNet  Google Scholar 

  • Kottas, A. & Fronczyk, K. (2013). Flexible Bayesian modelling for clustered categorical responses in developmental toxicology. In Bayesian Theory and Applications, Eds. P. Damien, P. Dellaportas, N. G. Polson & D. A. Stephens, pp. 70–83. Oxford University Press.

  • Kottas, A. & Krnjajić, M. (2009). Bayesian semiparametric modelling in quantile regression. Scandinavian Journal of Statistics 36, 297–319.

    Article  MathSciNet  MATH  Google Scholar 

  • Kottas, A., Wang, Z. & Rodríguez, A. (2012). Spatial modeling for risk assessment of extreme values from environmental time series: A Bayesian nonparametric approach. Environmetrics 23, 649–662.

    Article  MathSciNet  Google Scholar 

  • MacEachern, S. (2000). Dependent Dirichlet processes. Technical report, Ohio State University, Department of Statistics.

  • Nott, D. & Kuk, A. (2009). Analysis of clustered binary data with unequal cluster sizes: A semiparametric Bayesian approach. Journal of Agricultural, Biological, and Environmental Statistics 15, 101–118.

    Article  MathSciNet  MATH  Google Scholar 

  • Price, C., Kimmel, C., George, J. & Marr, M. (1987). The developmental toxicity of diethylene glycol dimethyl ether in mice. Fundamentals of Applied Pharmacology 8, 115–126.

    Article  Google Scholar 

  • Regan, M. & Catalano, P. (1999). Likelihood models for clustered binary and continuous outcomes: application to developmental toxicology. Biometrics 55, 760–768.

    Article  MATH  Google Scholar 

  • Rodriguez, A. & ter Horst, E. (2008). Bayesian dynamic density estimation. Bayesian Analysis 3, 339–366.

    MathSciNet  MATH  Google Scholar 

  • Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica 4, 639–650.

    MathSciNet  MATH  Google Scholar 

  • Xiao, S., Kottas, A. & Sansó, B. (2015). Modeling for seasonal marked point processes: An analysis of evolving hurricane occurrences. The Annals of Applied Statistics 9, 353–382.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of the second author was supported in part by the National Science Foundation under award DMS 1310438. The authors wish to thank an Associate Editor and two reviewers for useful feedback and for comments that improved the presentation of the material in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kassandra Fronczyk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 141 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fronczyk, K., Kottas, A. Risk Assessment for Toxicity Experiments with Discrete and Continuous Outcomes: A Bayesian Nonparametric Approach. JABES 22, 585–601 (2017). https://doi.org/10.1007/s13253-017-0293-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-017-0293-6

Keywords

Navigation