Skip to main content

Abstract

For any definition of additivity, evaluating whether an organism’s response to a mixture is additive depends on the dose-response relationships for each of the mixture’s component chemicals. Consequently, the statistical analysis of dose-response relationships is fundamental to mixture toxicology – as well as to other areas of toxicology. This chapter offers a broad overview of dose-response modeling and an introduction to some statistical issues that arise in the use of dose-response models – with an eye to evaluating additivity. It does not, however, attempt to be a handbook or guide to the use of any specific models; instead, it tries to make readers aware of issues that need attention to achieve efficient and valid inference. The chapter mentions features of study design and describes how they can influence both aspects of model fitting and the quality of results. It considers the choice of functional form used to describe how the mean response changes as dose increases as well as the evaluation of how well the chosen form fits the data at hand. The chapter also points out that proper modeling of the variability inherent in the structure of the data is crucial to efficient statistical inference. Finally, because many dose-response models require iterative numerical methods, it offers a few pointers to help overcome problems when these methods fail to converge. Dose-response modeling is an essential tool in mixture toxicology but one that demands careful application to achieve the best results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 239.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agresti, A. 2013. Categorical data analysis. 3rd ed. Hoboken: Wiley.

    Google Scholar 

  • Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19 (6): 716–723.

    Article  Google Scholar 

  • Altenburger, R., T. Backhaus, W. Boedeker, M. Faust, M. Scholze, and L.H. Grimme. 2000. Predictability of the toxicity of multiple chemical mixtures to vibrio fischeri: Mixtures composed of similarly acting chemicals. Environmental Toxicology and Chemistry 19 (9): 2341–2347.

    Article  CAS  Google Scholar 

  • Bates, D.M., and D.G. Watts. 1988. Nonlinear regression analysis and its applications. New York: Wiley.

    Book  Google Scholar 

  • Berenbaum, M.C. 1985. The expected effect of a combination of agents: The general solution. Journal of Theoretical Biology 114: 413–431.

    Article  CAS  PubMed  Google Scholar 

  • Bernstein, L., J. Kaldor, J. McCann, and M.C. Pike. 1982. An empirical approach to the statistical analysis of mutagenesis data from the Salmonella test. Mutation Research 97: 267–281.

    Article  CAS  PubMed  Google Scholar 

  • Bickel, P.J., and K.A. Doksum. 1977. Mathematical statistics: Basic ideas and selected topics. San Francisco: Holden-Day.

    Google Scholar 

  • Box, G.E.P., and D.R. Cox. 1964. An analysis of transformations. Journal of the Royal Statistical Society, Series B 26 (2): 211–252.

    Google Scholar 

  • Box, G.E.P., and G.C. Tiao. 1992. Bayesian inference in statistical analysis. New York: Wiley.

    Book  Google Scholar 

  • Breslow, N.E. 1984. Extra-poisson variation in log-linear models. Applied Statistics 33 (1): 38–44.

    Article  Google Scholar 

  • Burnham, K.P., and D.R. Anderson. 2002. Model selection and multimodel inference: A practical information-theoretic approach. 2nd ed. New York: Springer.

    Google Scholar 

  • Carlin, B.P., and T.A. Louis. 2000. Bayes and empirical Bayes methods for data analysis. 2nd ed. Boca Raton: Chapman & Hall.

    Google Scholar 

  • Casey, M., C. Gennings, W.H. Carter, V.C. Moser, and J.E. Simmons. 2004. Detecting interaction(s) and assessing the impact of component subsets in a chemical mixture using fixed-ratio mixture ray designs. Journal of Agricultural, Biological, and Environmental Statistics 9 (3): 339–361.

    Article  Google Scholar 

  • Christensen, E.R., and N. Nyholm. 1984. Ecotoxicological assays with algae: Weibull dose-response curves. Environmental Science & Technology 18 (9): 713–718.

    Article  CAS  Google Scholar 

  • Cook, R.D., and C.L. Tsai. 1985. Residuals in nonlinear regression. Biometrika 72 (1): 23–29.

    Article  Google Scholar 

  • Crofton, K.M., E.S. Craft, J.M. Hedge, C. Gennings, J.E. Simmons, R.A. Carchman, W.H. Carter, and M.J. DeVito. 2005. Thyroid-hormone-disrupting chemicals: Evidence for dose-dependent additivity or synergism. Environmental Health Perspectives 113 (11): 1549–1554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dette, H., N. Neumeyer, and K.F. Pilz. 2005. A note on nonparametric estimation of the effective dose in quantal bioassay. Journal of the American Statistical Association 100 (470): 503–510.

    Article  CAS  Google Scholar 

  • Dinse, G.E., and D.M. Umbach. 2011. Characterizing non-constant relative potency. Regulatory Toxicology and Pharmacology 60: 342–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efron, B., and R. Tibshirani. 1993. An introduction to the bootstrap. Boca Raton: CRC Press.

    Book  Google Scholar 

  • EPA (Environmental Protection Agency). 2016. The ToxCast analysis pipeline: An R package for processing and modeling chemical screening data. Date of access: 12 December 2017. https://www.epa.gov/sites/production/files/2015-08/documents/pipeline_overview.pdf.

  • Fang, Q., W.W. Piegorsch, S.J. Simmons, X. Li, C. Chen, and Y. Wang. 2015. Bayesian model-averaged benchmark dose analysis via reparameterized quantal-response models. Biometrics 71 (4): 1168–1175.

    Article  CAS  PubMed  Google Scholar 

  • Finney, D.J. 1971. Probit analysis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Freedman, D.A. 2006. On the so-called “Huber sandwich estimator” and “robust standard errors”. The American Statistician 60 (4): 299–302.

    Article  Google Scholar 

  • Guardabasso, V., D. Rodbard, and P.J. Munson. 1987. A model-free approach to estimation of relative potency in dose-response curve analysis. The American Journal of Physiology 252 (3): E357–E364.

    CAS  PubMed  Google Scholar 

  • Guardabasso, V., P.J. Munson, and D. Rodbard. 1988. A versatile method for simultaneous analysis of families of curves. The FASEB Journal 2 (3): 209–215.

    Article  CAS  PubMed  Google Scholar 

  • Harrell, F.E. 2001. Regression modeling strategies: With applications to linear models, logistic regression, and survival analysis. New York: Springer.

    Book  Google Scholar 

  • Haseman, J.K., and M.D. Hogan. 1975. Selection of the experimental unit in teratology studies. Teratology 12 (2): 165–171.

    Article  CAS  PubMed  Google Scholar 

  • Hertzberg, R.C., Y. Pan, R. Li, L.T. Haber, R.H. Lyles, D.W. Herr, V.C. Moser, and J.E. Simmons. 2013. A four-step approach to evaluate mixtures for consistency with dose addition. Toxicology 313: 134–144.

    Article  CAS  PubMed  Google Scholar 

  • Hill, A.V. 1910. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. The Journal of Physiology 40 (Suppl): iv–vii.

    Google Scholar 

  • Hunt, D.L., and D. Bowman. 2004. A parametric model for detecting hormetic effects in developmental toxicity studies. Risk Analysis 24 (1): 65–72.

    Article  PubMed  Google Scholar 

  • Kauermann, G., and R.J. Carroll. 2001. A note on the efficiency of sandwich covariance matrix estimation. Journal of the American Statistical Association 96 (456): 1387–1396.

    Article  Google Scholar 

  • Kelly, C., and J. Rice. 1990. Monotone smoothing with application to dose-response curves and assessment of synergism. Biometrics 46 (4): 1071–1085.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.B., S.M. Bartell, and D.L. Gillen. 2016. Inference for the existence of hormetic dose-response relationships in toxicology studies. Biostatistics 17 (3): 523–536.

    Article  PubMed  PubMed Central  Google Scholar 

  • Margolin, B.H., N. Kaplan, and E. Zeiger. 1981. Statistical analysis of the Ames Salmonella/microsome test. Proceedings of the National Academy of Sciences of the United States of America 78 (6): 3779–3783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montgomery, D.C., E.A. Peck, and G.G. Vining. 2012. Introduction to linear regression analysis. 5th ed. Hoboken: Wiley.

    Google Scholar 

  • Mood, A.M., and F.A. Graybill. 1963. Introduction to the theory of statistics. 2nd ed. New York: McGraw Hill.

    Google Scholar 

  • Nottingham, Q.J., and J.B. Birch. 2000. A semiparametric approach to analyzing dose-response data. Statistics in Medicine 19: 389–404.

    Article  CAS  PubMed  Google Scholar 

  • Piegorsch, W.W., and J.K. Haseman. 1991. Statistical methods for analyzing developmental toxicity data. Teratogenesis, Carcinogenesis, and Mutagenesis 11: 115–133.

    Article  CAS  PubMed  Google Scholar 

  • Ramsay, J.O. 1988. Monotone regression splines in action. Statistical Science 3 (4): 425–461.

    Article  Google Scholar 

  • Reeve, R., and J.R. Turner. 2013. Pharmacodynamic models: Parameterizing the Hill equation, Michaelis-Menten, the logistic curve, and relationships among these models. Journal of Biopharmaceutical Statistics 23: 648–661.

    Article  PubMed  Google Scholar 

  • Schwarz, G.E. 1978. Estimating the dimension of a model. Annals of Statistics 6 (2): 461–464.

    Article  Google Scholar 

  • Searle, S.R., G. Casella, and C.E. McCulloch. 2006. Variance components. New York: Wiley.

    Google Scholar 

  • Seber, G.A.F. 1977. Linear regression analysis. New York: Wiley.

    Google Scholar 

  • Seber, G., and C. Wild. 1989. Nonlinear regression. New York: Wiley.

    Book  Google Scholar 

  • Shockley, K.R. 2016. Estimating potency in high-throughput screening experiments by maximizing the rate of change in weighted Shannon entropy. Scientific Reports 6: 27897. https://doi.org/10.1038/srep27897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons, S.J., C. Chen, X. Li, Y. Wang, W.W. Piegorsch, Q. Fang, B. Hu, and G.E. Dunn. 2015. Bayesian model averaging for benchmark dose estimation. Environmental and Ecological Statistics 22: 5–16.

    Article  Google Scholar 

  • St. Laurent, R.T., and R.D. Cook. 1992. Leverage and superleverage in nonlinear regression. Journal of the American Statistical Association 87 (420): 985–990.

    Google Scholar 

  • St. Laurent, R.T., and R.D. Cook. 1993. Leverage, local influence and curvature in nonlinear regression. Biometrika 80 (1): 99–106.

    Article  Google Scholar 

  • Stephens, M.A. 1974. EDF statistics for goodness of fit and some comparisons. Journal of the American Statistical Association 69 (347): 730–737.

    Article  Google Scholar 

  • Wheeler, M.W., and A.J. Bailer. 2007. Properties of model-averaged BMDLs: A study of model averaging in dichotomous response risk estimation. Risk Analysis 27 (3): 659–670.

    Article  PubMed  Google Scholar 

  • ———. 2008. Model averaging software for dichotomous dose response risk estimation. Journal of Statistical Software 26 (5): 1–15. https://doi.org/10.18637/jss.v026.i05.

    Article  Google Scholar 

  • ———. 2009. Comparing model averaging with other model selection strategies for benchmark dose estimation. Environmental and Ecological Statistics 16: 37–51.

    Article  Google Scholar 

  • Wilk, M.B., and R. Gnanadesikan. 1968. Probability plotting methods for the analysis of data. Biometrika 55 (1): 1–17.

    CAS  PubMed  Google Scholar 

  • Williams, D.A. 1982. Extra-binomial variation in logistic linear models. Applied Statistics 31 (2): 144–148.

    Google Scholar 

  • Zorrilla, E.P. 1997. Multiparous species present problems (and possibilities) to developmentalists. Developmental Psychobiology 30 (2): 141–150.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gregg E. Dinse or David M. Umbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dinse, G.E., Umbach, D.M. (2018). Dose-Response Modeling. In: Rider, C., Simmons, J. (eds) Chemical Mixtures and Combined Chemical and Nonchemical Stressors. Springer, Cham. https://doi.org/10.1007/978-3-319-56234-6_8

Download citation

Publish with us

Policies and ethics