Skip to main content

Population Effects and Variability

  • Protocol
  • First Online:
Computational Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 929))

Abstract

Chemical risk assessment for human health requires a multidisciplinary approach through four steps: hazard identification and characterization, exposure assessment, and risk characterization. Hazard identification and characterization aim to identify the metabolism and elimination of the chemical (toxicokinetics) and the toxicological dose–response (toxicodynamics) and to derive a health-based guidance value for safe levels of exposure. Exposure assessment estimates human exposure as the product of the amount of the chemical in the matrix consumed and the consumption itself. Finally, risk characterization evaluates the risk of the exposure to human health by comparing the latter to with the health-based guidance value. Recently, many research efforts in computational toxicology have been put together to characterize population variability and uncertainty in each of the steps of risk assessment to move towards more quantitative and transparent risk assessment. This chapter focuses specifically on modeling population variability and effects for each step of risk assessment in order to provide an overview of the statistical and computational tools available to toxicologists and risk assessors. Three examples are given to illustrate the applicability of those tools: derivation of pathway-related uncertainty factors based on population variability, exposure to dioxins, dose–response modeling of cadmium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Commission (EC) (2002) Regulation (EC) No 178/2002 of the european parliament and of the council laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2002:031:0001:0024:EN:PDF

  2. WHO (2009) Principles and methods for the risk assessment of chemicals in food, Environmental health criteria 240. http://www.who.int/foodsafety/chem/principles/en/index1.html

  3. Svendsen C, Ragas AM, Dorne JLCM (2008) Contaminants in organic and conventional food: the missing link between contaminant levels and health effects. Book comparing organic vs non-organic food at the nutritional, microbiological and toxicological level. In: Givens DI et al (eds) Health benefits of organic foods: effects of the environment. Chapter 6, vol 119. CABI, Wallingford

    Google Scholar 

  4. Dorne JLCM, Bordajandi LR, Amzal B, Ferrari P, Verger P (2009) Combining analytical techniques, exspoure assessment and biological effects for risk assessment of chemicals in food. Trends Anal Chem 2009(28):695

    Article  Google Scholar 

  5. Kroes R, Müller D, Lambe J, Löwik MR, van Klaveren J, Kleiner J, Massey R, Mayer S, Urieta I, Verger P, Visconti A (2002) Assessment of intake from the diet. Food Chem Toxicol 40(2–3):327–385

    PubMed  CAS  Google Scholar 

  6. Dorne JCM (2010) Metabolism, variability and risk assessment. Toxicology 268(3):156–164

    Article  PubMed  CAS  Google Scholar 

  7. EFSA (European Food Safety Authority) (2005) Opinion of the Scientific Committee on a request from EFSA related to a harmonised approach for risk assessment of substances which are both genotoxic and carcinogenic. EFSA J 282:1–31. http://www.efsa.europa.eu/EFSA/Scientific_Opinion/sc_op_ej282_gentox_en3.pdf

    Google Scholar 

  8. FAO/WHO (Food and Agriculture Organisation of the United Nations/World Health Organization) (2006) Safety evaluation of certain contaminants in food. Prepared by the Sixty-fourth meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). FAO Food Nutr Pap 82:1–778

    Google Scholar 

  9. EFSA (European Food Safety Authority) (2007) Opinion of the Scientific Panel on Contaminants in the Food chain on a request from the European Commission on ethyl carbamate and hydrocyanic acid in food and beverages. EFSA J 551:1–44. :http://www.efsa.europa.eu/cs/BlobServer/Scientific_Opinion/Contam_ej551_ethyl_carbamate_en_rev.1.pdf?ssbinary=true

  10. EFSA (European Food Safety Authority) (2008) Scientific Opinion of the Panel on Contaminants in the Food Chain on a request from the European Commission on Polycyclic Aromatic Hydrocarbons in Food. EFSA J 724:1–114. http://www.efsa.europa.eu/cs/BlobServer/Scientific_Opinion/contam_ej_724_PAHs_en,1.pdf?ssbinary=true

  11. EFSA (European Food Safety Authority) (2009) Scientific opinion on arsenic in food. EFSA J 7(10):1051. http://www.efsa.europa.eu/en/efsajournal/doc/1351.pdf

    Google Scholar 

  12. JMPR (Joint FAO/WHO Meetings on Pesticide Residues) (2002) Report of the JMPR, FAO Plant Production and Protection Paper, 172, 4. FAO, Rome

    Google Scholar 

  13. EFSA (2009) Scientific opinion on marine biotoxins in shellfish—Palytoxin group. EFSA J 7(12):1293. http://www.efsa.europa.eu/en/efsajournal/doc/1393.pdf

    Google Scholar 

  14. EFSA (2009) Potential risks for public health due to the presence of nicotine in wild mushrooms. EFSA J RN-286:2–47. http://www.efsa.europa.eu/en/efsajournal/doc/286r.pdf

  15. Renwick AG, Lazarus NR (1998) Human variability and noncancer risk assessment—an analysis of the default uncertainty factor. Regul Toxicol Pharmacol 27:3–20

    Article  CAS  Google Scholar 

  16. WHO (2005) International Programme on Chemical Safety: chemical-specific adjustment. Factors for interspecies differences and human variability: guidance document for use of data in dose/concentration response assessment. World Health Organization, Geneva. http://www.who.int/ipcs/methods/harmonization/areas/uncertainty/en/index.html

  17. Amzal B, Julin B, Vahter M, Johanson G, Wolk A, Åkesson A (2009) Population toxicokinetic modeling of cadmium for health risk assessment. Environ Health Perspect 117(8):1293–1301

    Article  PubMed  CAS  Google Scholar 

  18. EFSA (European Food Safety Authority) (2009) Scientific Opinion of the Panel on Contaminants in the Food Chain on a request from the European Commission on cadmium in food. EFSA J 980:1–139. http://www.efsa.europa.eu/cs/BlobServer/Scientific_Opinion/contam_op_ej980_cadmium_en_rev.1.pdf?ssbinary=true

  19. Dorne JLCM, Walton K, Renwick AG (2005) Human variability in xenobiotic metabolism and pathway-related uncertainty factors for chemical risk assessment: a review. Food Chem Toxicol 43:203–216

    Article  PubMed  CAS  Google Scholar 

  20. Gerlowski LE, Jain RK (1983) Physiologically based pharmacokinetic modeling: principles and applications. J Pharm Sci 72:1103–1127

    Article  PubMed  CAS  Google Scholar 

  21. Bois F, Jamei M, Clewell HJ (2010) PBPK modelling of inter-individual variability in the pharmacokinetics of environmental chemicals. Toxicology 278:256–267

    Article  PubMed  CAS  Google Scholar 

  22. Gibaldi M, Perrier D (1982) Pharmacokinetics, 2nd edn, revised and expanded ed. Marcel Dekker, New York

    Google Scholar 

  23. Jamei M, Marciniak S, Feng KR, Barnett A, Tucker G, Rostami-Hodjegan A (2009) The Simcyp population-based ADME simulator. Expert Opin Drug Metab Toxicol 5:211–223

    Article  PubMed  CAS  Google Scholar 

  24. Bouvier d’Yvoire M, Prieto P, Blaauboer BJ, Bois FY, Boobis A, Brochot C, Coecke S, Freidig A, Gundert-Remy U, Hartung T, Jacobs MN, Lavé T, Leahy DE, Lennernäs H, Loizou GD, Meek B, Pease C, Rowland M, Spendiff M, Yang J, Zeilmaker M (2007) Physiologically-based kinetic modelling (PBK modelling): meeting the 3Rs agenda—the report and recommendations of ECVAM Workshop 63a. Altern Lab Anim 35:661–671

    PubMed  Google Scholar 

  25. Edginton AN, Schmitt W, Willmann S (2006) Development and evaluation of a generic physiologically based pharmacokinetic model for children. Clin Pharmacokinet 45:1013–1034

    Article  PubMed  CAS  Google Scholar 

  26. Luecke RH, Pearce BA, Wosilait WD, Slikker W, Young JF (2007) Postnatal growth considerations for PBPK modeling. J Toxicol Environ Health A 70:1027–1037

    Article  PubMed  CAS  Google Scholar 

  27. Jones HM, Gardner IB, Watson KJ (2009) Modelling and PBPK simulation in drug discovery. AAPS J 11:155–166

    Article  PubMed  Google Scholar 

  28. Allen BC, Hack CE, Clewell HJ (2007) Use of Markov chain Monte Carlo analysis with a physiologically-based pharmacokinetic model of methylmercury to estimate exposures in US women of childbearing age. Risk Anal 27:947–959

    Article  PubMed  Google Scholar 

  29. Lorber M (2008) Exposure of Americans to polybrominated diphenyl ethers. J Expo Sci Environ Epidemiol 18(1):2–19

    Article  PubMed  CAS  Google Scholar 

  30. Fromme H, Korner W et al (2009) Human exposure to polybrominated diphenyl ethers (PBDE), as evidenced by data from a duplicate diet study, indoor air, house dust, and biomonitoring in Germany. Environ Int 35(8):1125–1135

    Article  PubMed  CAS  Google Scholar 

  31. US-EPA (2003) Exposure and human health reassessment of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds National Academy Sciences (NAS) review draft. Part III. EPA, Washington, DC

    Google Scholar 

  32. Pinsky PF, Lorber MN (1998) A model to evaluate past exposure to 2,3,7,8-TCDD. J Expo Anal Environ Epidemiol 8(2):187–206

    PubMed  CAS  Google Scholar 

  33. Smith JC, Farris FF (1996) Methyl mercury pharmacokinetics in man: a reevaluation. Toxicol Appl Pharmacol 137(2):245–252

    Article  PubMed  CAS  Google Scholar 

  34. Albert I, Villeret G et al (2010) Integrating variability in half-lives and dietary intakes to predict mercury concentration in hair. Regul Toxicol Pharmacol 58(3):482–489

    Article  PubMed  CAS  Google Scholar 

  35. Delyon B, Lavielle M, Moulines E (1999) Convergence of a stochastic approximation version of the EM algorithm. Ann Stat 27(1):94–128

    Article  Google Scholar 

  36. Rowland M, Benet LZ, Graham GG (1973) Clearance concepts in pharmacokinetics. J Pharmacokinet Biopharm 1:123–136

    PubMed  CAS  Google Scholar 

  37. Shuey DL, Lau C, Logsdon TR, Zucker RM, Elstein KH, Narotsky MG, Setzer RW, Kavlock RJ, Rogers JM (1994) Biologically based dose-response modeling in developmental toxicology: biochemical and cellular sequelae of 5-fluorouracil exposure in the developing rat. Toxicol Appl Pharmacol 126(1):129–144

    Article  PubMed  CAS  Google Scholar 

  38. Crump KS, Chen C, Chiu WA, Louis TA, Portier CJ et al (2010) What role for biologically based dose–response models in estimating low-dose risk? Environ Health Perspect 118(5)

    Google Scholar 

  39. Crump KS (1984) A new method for determining allowable daily intakes. Fundam Appl Toxicol 4:854–871

    Article  PubMed  CAS  Google Scholar 

  40. Budtz-Jørgensen E, Keiding N, Grandjean P (2001) Benchmark dose calculation from epidemiological data. Biometrics 57:698–706

    Article  PubMed  Google Scholar 

  41. Sand S et al (2008) The current state of knowledge on the use of the benchmark dose concept in risk assessment. J Appl Toxicol 28(4):405–421

    Article  PubMed  CAS  Google Scholar 

  42. Crump KS (2002) Critical issues in benchmark calculations from continuous data. Crit Rev Toxicol 32:133–153

    Article  PubMed  CAS  Google Scholar 

  43. Suwazono Y et al (2006) Benchmark dose for cadmium-induced renal effects in humans. Environ Health Perspect 114(7):1072–1076

    Article  PubMed  CAS  Google Scholar 

  44. Ryan L (2008) Combining data from multiple sources, with applications to environmental risk assessment. Stat Med 27:698–710

    Article  PubMed  Google Scholar 

  45. Wheeler MW, Bailer AJ (2007) Properties of model-averaged BMDLs: a study of model averaging in dichotomous response risk estimation. Risk Anal 27:659–670

    Article  PubMed  Google Scholar 

  46. Morales KH, Ibrahim JG, Chen CJ, Ryan LM (2006) Bayesian model averaging with applications to benchmark dose estimation for arsenic in drinking water. J Am Stat Assoc 101(473):9–17

    Article  CAS  Google Scholar 

  47. EC (2004) European Union System for the Evaluation of Substances 2.0 (EUSES 2.0). Prepared for the European Chemicals Bureau by the National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands (RIVM Report no. 601900005). Available via the European Chemicals Bureau. http://ecb.jrc.it

  48. Bertail P, Clémençon S et al (2010) Statistical analysis of a dynamic model for dietary contaminant exposure. J Biol Dyn 4(2):212–234

    Article  PubMed  CAS  Google Scholar 

  49. Verger P, Tressou J, Clémençon S (2007) Integration of time as a description parameter in risk characterisation: application to methyl mercury. Regul Toxicol Pharmacol 49(1):25–30

    Article  PubMed  CAS  Google Scholar 

  50. Tressou J, Leblanc JCh, Feinberg M, Bertail P (2004) Statistical methodology to evaluate food exposure to a contaminant and influence of sanitary limits: application to ochratoxin A. Regul Toxicol Pharmacol 40(3):252–263

    Article  PubMed  CAS  Google Scholar 

  51. Van den Berg M, Birnbaum L et al (1998) Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect 106:775–792

    Article  PubMed  Google Scholar 

  52. Thuresson, Höglund et al (2000) In: Medicine and health policy. New York: Marcel Dekker

    Google Scholar 

  53. AFSSA (2009) Etude individuelle Nationale des consommations Alimentaires 2 (INCA 2) (2006-2007), Rapport AFSSA, 228p, http://www.anses.fr/Documents/PASER-Ra-INCA2.pdf

  54. EFSA (2010) Application of systematic review methodology to food and feed safety assessments to support decision making. EFSA J 8(6):1637. http://www.efsa.europa.eu/en/efsajournal/doc/1637.pdf

    Google Scholar 

  55. Marvier M, McCreedy C, Regetz J, Kareiva P (2007) A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science 316(5830):1475–1477

    Article  PubMed  CAS  Google Scholar 

  56. Greenland S, Robins J (1994) Invited commentary: ecologic studies—biases, misconceptions, and counterexamples. Am J Epidemiol 139:747–60

    PubMed  CAS  Google Scholar 

  57. Terrin N, Schmidt CH, Lau J, Olkin I (2003) Adjusting for publication bias in the presence of heterogeneity. Stat Med 22:2113–2212

    Article  PubMed  Google Scholar 

  58. Stangl D, Berry DA (eds) Meta-analysis

    Google Scholar 

  59. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  Google Scholar 

  60. Egger M et al (2001) Systematic reviews in health care. BMJ books, London

    Book  Google Scholar 

  61. Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  PubMed  CAS  Google Scholar 

  62. Biro G, Hulshof K, Ovesen L, Amorim Cruz JA (2002) Selection of methodology to assess food intake. Eur J Clin Nutr 56(Suppl 2):S25–S32. doi:10.1038/sj/ejcn/1601426

    Article  PubMed  Google Scholar 

  63. Verger P, Ireland J, Møller A, Abravicius JA, De Henauw S, Naska A (2002) Improvement of comparability of dietary intake assessment using currently available individual food consumption surveys. Eur J Clin Nutr 56(Suppl 2):S1–S7. doi:10.1038/sj/ejcn/1601425

    Google Scholar 

  64. Wirfält E, Hedblad B, Gullberg B, Mattisson I, AndrénC RU, Janzon L, Berglund G (2001) Food patterns and components of the metabolic syndrome in men and women: A cross-sectional study within the Malmö diet and cancer cohort. Am J Epidemiol 154(12):1150–1159

    Article  PubMed  Google Scholar 

  65. Zetlaoui M, Feinberg M, Verger P, Clémencon S (2011) Extraction of food consumption systems by non-negative matrix factorization (NMF) for the assessment of food choices. Biometrics (in press). http://hal.archives-ouvertes.fr/docs/00/48/47/94/PDF/NMF_food.pdf

  66. EFSA (2010) European Food Safety Authority; management of left-censored data in dietary exposure assessment of chemical substances. EFSA J 8(3):1557. http://www.efsa.europa.eu/en/efsajournal/doc/1557.pdf

  67. Helsel DR (2005) Nondetects and data analysis. Wiley, New York

    Google Scholar 

  68. Kennedy MC, Roelofs VJ et al (2011) A hierarchical Bayesian model for extreme pesticide residues. Food Chem Toxicol 49(1):222–232

    Article  PubMed  CAS  Google Scholar 

  69. Tressou J, Bertail P et al (2003) 709 Evaluation of food risk exposure using extreme value theory-application to heavy metals for sea products consumers. Toxicol Lett 144(Supplement 1):s190

    Article  Google Scholar 

  70. WHO (2009) Principles for modelling dose-response for the risk assessment of chemicals. Environmental Health Criteria. http://www.who.int/tipcs/methods/harmonization/ dose_response/en/

  71. Spilke J, Piepho HP, Hu X (2005) A simulation study on tests of hypotheses and confidence intervals for fixed effects in mixed models for blocked experiments with missing data. J Agric Biol Environ Stat 10:374–389

    Article  Google Scholar 

  72. Spiegelhalter DJ, Best NG et al (2002) Bayesian measures of model complexity and fit. J R Stat Soc Series B Stat Methodol 64:583–640

    Article  Google Scholar 

  73. Dorne JLCM, Walton K, Renwick AG (2001) Uncertainty factors for chemical risk assessment: human variability in the pharmacokinetics of CYP1A2 probe substrates. Food Chem Toxicol 39:681–696

    Article  PubMed  CAS  Google Scholar 

  74. Dorne JLCM, Walton K, Slob W, Renwick AG (2002) Human variability in polymorphic CYP2D6 metabolism: is the kinetic default uncertainty factor adequate? Food Chem Toxicol 40:1633–1656

    Article  PubMed  CAS  Google Scholar 

  75. Dorne JLCM, Renwick AG (2005) The refinement of uncertainty/safety factors in risk assessment by the incorporation of data on toxicokinetic variability in humans. Toxicol Sci 86:20–26

    Article  PubMed  CAS  Google Scholar 

  76. Dorne JLCM, Walton K, Renwick AG (2003) Human variability in CYP3A4 metabolism and CYP3A4-related uncertainty factors for risk assessment. Food Chem Toxicol 41:201–224

    Article  PubMed  CAS  Google Scholar 

  77. Dorne JLCM, Walton K, Renwick AG (2003) Polymorphic CYP2C19 and N-acetylation: human variability in kinetics and pathway-related uncertainty factors. Food Chem Toxicol 41:225–245

    Article  PubMed  CAS  Google Scholar 

  78. Kjellström T (1971) A mathematical model for the accumulation of cadmium in human kidney cortex. Nord Hyg Tidskr 52:111–119

    PubMed  Google Scholar 

  79. Sutton AJ, Higgins JPT (2008) Recent developments in meta-analysis. Stat Med 27:625–650

    Article  PubMed  Google Scholar 

  80. Berry D, Strangl DK (eds) (2001) Meta-analysis in medicine and health policy. Biostatistics, New York

    Google Scholar 

  81. Morales KH, Ryan LM (2005) Benchmark dose estimation based on epidemiologic cohort data. Environmetrics 16:435–447

    Article  Google Scholar 

  82. Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS—a Bayesian modelling framework: concepts, structure and extensibility. Stat Comput 10:325–337

    Article  Google Scholar 

  83. EFSA (2011) Comparison of the approaches taken by EFSA and JECFA to establish a HBGV for cadmium. http://www.efsa.europa.eu/en/efsajournal/doc/2006.pdf.

  84. Suwazono Y, Nogawa K, Uetani M et al (2011) Application of hybrid approach for estimating the benchmark dose of urinary cadmium for adverse renal effects in the general population of Japan. J Appl Toxicol 31(1):89–93

    Article  PubMed  CAS  Google Scholar 

  85. Tard A, Gallotti S, Leblanc JC, Volatier JL (2007) Dioxins, furans and dioxin-like PCBs: occurrence in food and dietary intake in France. Food Addit Contam 24(9):1007–1017

    Article  PubMed  CAS  Google Scholar 

  86. Milbrath MO, Wenger Y, Chang CW, Emond C, Garabrant D, Gillespie BW, Jolliet O (2009) Apparent half-lives of dioxins, furans, and polychlorinated biphenyls as a function of age, body fat, smoking status, and breast-feeding. Environ Health Perspect 117(3):417–425

    PubMed  Google Scholar 

  87. Gray LE, Ostby JS et al (1997) A dose-response analysis of the reproductive effects of a single gestational dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin in male Long Evans Hooded rat offspring. Toxicol Appl Pharmacol 146(11–20)

    Google Scholar 

  88. Bokkers, B. G. H., M. J. Zeilmaker, et al. (2009). RIVM report on framework and integration methods. The application of animal toxicity data in risk-benefit analysis: 2,3,7,8-TCDD as an example.

    Google Scholar 

  89. Bernillon P, Bois FY (2000) Statistical issues in toxicokinetic modeling: a Bayesian perspective. Environ Health Perspect 108(Suppl 5):883–893

    PubMed  CAS  Google Scholar 

  90. Yan L, Sheihk-Bahaei S, Park S, Ropella GE, Hunt CA (2008) Predictions of hepatic disposition properties using a mechanistically realistic, physiologically based model. Drug Metab Dispos 36(4):759–768

    Article  PubMed  CAS  Google Scholar 

  91. Lerapetritou MG, Georgopoulos PG, Roth CM, Androulakis LP (2009) Tissue-level modeling of xenobiotic metabolism in liver: an emerging tool for enabling clinical translational research. Clin Transl Sci 2(3):228–237

    Article  PubMed  Google Scholar 

  92. McDonald TA (2005) Polybrominated diphenylether levels among United States residents: daily intake and risk of harm to the developing brain and reproductive organs. Integr Environ Assess Manag 1(4):343–354

    Article  PubMed  CAS  Google Scholar 

  93. Van der Molen GW, Kooijman SALM et al (1996) A generic toxicokinetic model for persistent lipophilic compounds in humans: an application to TCDD. Fundam Appl Toxicol 31(1):83–94

    Article  PubMed  Google Scholar 

  94. Verner MA, Ayotte P et al (2009) A physiologically based pharmacokinetic model for the assessment of infant exposure to persistent organic pollutants in epidemiologic studies. Environ Health Perspect 117(3):481–487

    PubMed  CAS  Google Scholar 

  95. Lu C, Holbrook CM et al (2010) The implications of using a physiologically based pharmacokinetic (PBPK) model for pesticide risk assessment. Environ Health Perspect 118(1):125–130

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The views reflected in this review are the authors’ only and do not reflect the views of the European Food Safety Authority, the Technological university of Compiegne, the French Agency for Food, Environment, and Occupational Health Safety, the French National Institute of Agronomical Research (INRA), or the World Health organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Lou Dorne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dorne, J.L., Amzal, B., Bois, F., Crépet, A., Tressou, J., Verger, P. (2012). Population Effects and Variability. In: Reisfeld, B., Mayeno, A. (eds) Computational Toxicology. Methods in Molecular Biology, vol 929. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-050-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-050-2_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-049-6

  • Online ISBN: 978-1-62703-050-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics