Skip to main content
Log in

A Continuum Model for Platelet Transport in Flowing Blood Based on Direct Numerical Simulations of Cellular Blood Flow

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Computational modeling of arterial thrombus formation based on patient-specific data holds promise as a non-invasive tool for preventive diagnosis of atherosclerotic lesions. Platelet transport to the surface of a growing thrombus may be a rate limiting step in rapid thrombus formation, so accurate modeling of platelet transport may be essential for computational modeling of arterial thrombus formation. The presence of red blood cells (RBCs) in blood greatly affects platelet transport. In flowing blood, RBCs migrate away from the walls and platelets marginate toward the walls. We investigate the mechanics of platelet margination by direct simulation of cellular blood flow. We show that platelet margination can be explained by RBC-enhanced shear-induced diffusion of platelets in the RBC-filled region combined with platelet trapping in the RBC-free region. A simple continuum model is introduced based on the proposed mechanism. Using an experimental correlation for effective diffusivity in blood, the continuum model can recover experimental results from the literature over a wide range of tube diameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Aarts, P. A. M. M., S. A. T. van den Broek, G. W. Prins, G. D. C. Kuiken, J. J. Sixma, and R. M. Heethaar. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arteriosclerosis, 8(6):819–824, 1988.

    Article  CAS  PubMed  Google Scholar 

  2. Abkarian, M. and A. Viallat. Dynamics of vesicles in a wall-bounded shear flow. Biophys. J., 89(2):1055–66, 2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Abkarian, M., and A. Viallat. Vesicles and red blood cells in shear flow. Soft Matter., 4(4):653, 2008.

    Article  CAS  Google Scholar 

  4. Aidun, C. K., Y. Lu, and E. -J. Ding. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech., 373:287–311, 1998.

    Article  CAS  Google Scholar 

  5. Bark, D. L., and D. N. Ku. Platelet transport rates and binding kinetics at high shear over a thrombus. Biophys. J., 105(2):502–511, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Beck, M. R., and E. C. Eckstein. Preliminary report on platelet concentration in capillary tube flows of whole blood. Biorheology, 17(5–6):455, 1980.

    PubMed  Google Scholar 

  7. Byun. H., T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park. Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient. Acta Biomater., 8(11):4130–8, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Cheruvu, P. K., A. V. Finn, C. Gardner, J. Caplan, J. Goldstein, G. W. Stone, R. Virmani, and J. E. Muller. Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries: a pathologic study. J. Am. Coll. Cardiol., 50(10):940–949, 2007.

    Article  PubMed  Google Scholar 

  9. Clausen, J. R., D. A. Reasor Jr., and C. K. Aidun. Parallel performance of a lattice-Boltzmann/finite element cellular blood flow solver on the IBM Blue Gene/P architecture. Comput. Phys. Commun., 181(6):1013–1020, 2010.

    Article  CAS  Google Scholar 

  10. Coupier, G., B. Kaoui, T. Podgorski, and C. Misbah. Noninertial lateral migration of vesicles in bounded Poiseuille flow. Phys. Fluids, 20(11):111702, 2008.

    Article  Google Scholar 

  11. Crowl, L., and A. L. Fogelson. Analysis of mechanisms for platelet near-wall excess under arterial blood flow conditions. J. Fluid Mech., 676:348–375, 2011.

    Article  Google Scholar 

  12. Eckstein, E. C., and F. Belgacem. Model of platelet transport in flowing blood with drift and diffusion terms. Biophys. J., 60(1):53–69, 1991.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Eckstein, E. C., D. L. Bilsker, C. M. Waters, J. S. Kippenhan, and A. W. Tilles. Transport of platelets in flowing blood. Ann. NY. Acad. Sci., 516:442–452, 1987.

    Article  CAS  PubMed  Google Scholar 

  14. Eckstein, E. C., A. W. Tilles, and F. J. Millero. Conditions for the occurrence of large near-wall small excesses of small particles during blood flow. Microvasc. Res., 36:31–39, 1988.

    Article  CAS  PubMed  Google Scholar 

  15. Fedosov, D. A., B. Caswell, A. S. Popel, and G. E. Karniadakis. Blood flow and cell-free layer in microvessels. Microcirculation, 17(8):615–28, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Freund, J. B., and M. M. Orescannin. Cellular flow in a small blood vessel. J. Fluid Mech., 671:466–490, 2011.

    Article  Google Scholar 

  17. Geislinger, T. M., B. Eggart, S. Braunmuller, L. Schmid, and T. Franke. Separation of blood cells using hydrodynamic lift. Appl. Phys. Lett., 100(18):183701, 2012.

    Article  Google Scholar 

  18. Hund, S. J., and J. F. Antaki. An extended convection diffusion model for red blood cell-enhanced transport of thrombocytes and leukocytes. Phys. Med. Biol., 54(20):6415–35, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Jordan, A., T. David, S. Homer-Vanniasinkam, A. Graham, and P. Walker. The effects of margination and red cell augmented platelet diffusivity on platelet adhesion in complex flow. Biorheology, 41(5):641–53, 2004.

    CAS  PubMed  Google Scholar 

  20. Kao, S. -H. Platelet Transport and Surface Reactions in Mural Thrombosis. PhD thesis, Rice University, 2000.

  21. Keller, K. H. Effect of fluid shear on mass transport in flowing blood. Fed. Proc., 30(5):1591–9, 1971.

    CAS  PubMed  Google Scholar 

  22. Kim, S., R. L. Kong, A. S. Popel, M. Intaglietta, P. C. Johnson, C. Paul, A. J. Physiol, and H. Circ. Temporal and spatial variations of cell-free layer width in arterioles. Am. J. Physiol. Heart C., 293(3):H1526–35, 2007.

    Article  CAS  Google Scholar 

  23. Kim, S., P. K. Ong, O. Yalcin, M. Intaglietta, and P. C. Johnson. The cell-free layer in microvascular blood flow. Biorheology, 46(3):181–9, 2009.

    CAS  PubMed  Google Scholar 

  24. Kumar, A., and M. D. Graham. Segregation by membrane rigidity in flowing binary suspensions of elastic capsules. Phys. Rev. E., 84(6):066316, 2011.

    Article  Google Scholar 

  25. Kumar, A., and M. D. Graham. Margination and segregation in confined flows of blood and other multicomponent suspensions. Soft Matter., 8(41):10536, 2012a.

    Article  CAS  Google Scholar 

  26. Kumar, A., and M. D. Graham. Mechanism of margination in confined flows of blood and other multicomponent suspensions. Phys. Rev. Lett., 109(10):108102, 2012b.

    Article  PubMed  Google Scholar 

  27. Lei, H., D. A. Fedosov, B. Caswell, and G. E. Karniadakis. Blood flow in small tubes: quantifying the transition to the non-continuum regime. J. Fluid Mech., 722:214–239, 2013.

    Article  CAS  Google Scholar 

  28. Leiderman, K., and A. L. Fogelson. Grow with the flow: a spatial-temporal model of platelet deposition and blood coagulation under flow. Math. Med. Biol., 28(1):47–84, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Leighton, D., and A. Acrivos. The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech., 181:415–439, 1987.

    Article  CAS  Google Scholar 

  30. Li, J., M. Dao, C. T. Lim, and S. Suresh. Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys. J., 88(5):3707–19, 2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Libby, P., and P. Theroux. Pathophysiology of coronary artery disease. Circulation, 111(25):3481–8, 2005.

    Article  PubMed  Google Scholar 

  32. Naghavi, M., P. Libby, E. Falk, S. W. Casscells, S. Litovsky, J. Rumberger, J. J. Badimon, C. Stefanadis, P. Moreno, G. Pasterkamp, Z. Fayad, P. H. Stone, S. Waxman, P. Raggi, M. Madjid, A. Zarrabi, A. Burke, C. Yuan, P. J. Fitzgerald, D. S. Siscovick, C. L. de Korte, M. Aikawa, K. E. Juhani Airaksinen, G. Assmann, C. R. Becker, J. H. Chesebro, A. Farb, Z. S. Galis, C. Jackson, I.-K. Jang, W. Koenig, R. a. Lodder, K. March, J. Demirovic, M. Navab, S. G. Priori, M. D. Rekhter, R. Bahr, S. M. Grundy, R. Mehran, A. Colombo, E. Boerwinkle, C. Ballantyne, W. Insull, R. S. Schwartz, R. Vogel, P. W. Serruys, G. K. Hansson, D. P. Faxon, S. Kaul, H. Drexler, P. Greenland, J. E. Muller, R. Virmani, P. M. Ridker, D. P. Zipes, P. K. Shah, and J. T. Willerson. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation, 108(14):1664–1672, 2003.

    Article  PubMed  Google Scholar 

  33. Nott, P. R., and J. F. Brady. Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech., 275:157–199, 1994.

    Article  CAS  Google Scholar 

  34. Palmer, A. A. Platelet and leucocyte skimming. In: Fourth European Conference on Microcirculation, Cambridge, England, 1966, pp. 300–303.

  35. Panteleev, M. A., N. M. Ananyeva, F. I. Ataullakhanov, and E. L. Saenko. Mathematical models of blood coagulation and platelet adhesion: clinical applications. Curr. Pharm. Des., 13(14):1457–67, 2007.

    Article  CAS  PubMed  Google Scholar 

  36. Phillips, R. J., R. C. Armstrong, R. a. Brown, A. L. Graham, and J. R. Abbott. A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys. Fluids A., 4(1):30, 1992.

    Article  CAS  Google Scholar 

  37. Reasor, D. A., Jr., J. R. Clausen, and C. K. Aidun. Coupling the lattice-Boltzmann and spectrin-link methods for the direct numerical simulation of cellular blood flow. Int. J. Numer. Method Fluid, 68(6):767–781, 2012.

    Article  Google Scholar 

  38. Reasor, D. A., Jr., M. Mehrabadi, D. N. Ku, and C. K. Aidun. Determination of Critical Parameters in Platelet Margination. Ann. Biomed. Eng., 41(2):238–249, 2013.

    Article  PubMed  Google Scholar 

  39. Reinke, W., P. Gaehtgens, and P. C. Johnson. Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation. Am. J. Phys. Heart C., 253(3):H540–H547, 1987.

    CAS  Google Scholar 

  40. Saadatmand, M., T. Ishikawa, N. Matsuki, M. Jafar Abdekhodaie, Y. Imai, H. Ueno, and T. Yamaguchi. Fluid particle diffusion through high-hematocrit blood flow within a capillary tube. J. Biomech., 44(1):170–5, 2011.

    Article  PubMed  Google Scholar 

  41. Sharan, M., and A. S. Popel. A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology, 38(5–6):415–28, 2001.

    CAS  PubMed  Google Scholar 

  42. Sierou, A., and J. F. Brady. Shear-induced self-diffusion in non-colloidal suspensions. J. Fluid Mech., 506:285–314, 2004.

  43. Sorensen, E. N., G. W. Burgreen, W. R. Wagner, and J. F. Antaki. Computational simulation of platelet deposition and activation: I. Model development and properties. Ann. Biomed. Eng., 27(4):436–48, 1999.

    Article  CAS  PubMed  Google Scholar 

  44. Strong, A. B., G. D. Stubley, G. Chang, and D. R. Absolom. Theoretical and experimental analysis of cellular adhesion to polymer surfaces. J. Biomed. Mater. Res., 21(8):1039–55, 1987.

    Article  CAS  PubMed  Google Scholar 

  45. Suzuki, Y., N. Tateishi, M. Soutani, and N. Maeda. Deformation of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformability. Microcirculation, 3(1):49–57, 1996.

    Article  CAS  PubMed  Google Scholar 

  46. Tan, M. H. -Y., D.-V. Le, and K.-H. Chiam. Hydrodynamic diffusion of a suspension of elastic capsules in bounded simple shear flow. Soft Matter., 8(7):2243–2251, 2012.

    Article  CAS  Google Scholar 

  47. Tangelder, G. J., D. W. Slaaf, H. C. Tierlinck, R. Alewijnse, and R. S. Reneman. Localization within a thin optical section of fluorescent blood platelets flowing in a microvessel. Microvasc. Res., 23(2):214–30, 1982.

    Article  CAS  PubMed  Google Scholar 

  48. Tangelder, G. J., H. C. Teirlinck, D. W. Slaaf, and R. S. Reneman. Distribution of blood platelets flowing in arterioles. Am. J. Phys. Heart C., 248(3):H318–H323, 1985.

    CAS  Google Scholar 

  49. Taylor, C. A., and J. D. Humphrey. Open problems in computational vascular biomechanics: hemodynamics and arterial wall mechanics. Comput. Method. Appl. Mech., 198(45–46):3514–3523, 2009.

    Article  Google Scholar 

  50. Tilles, A. W., and E. C. Eckstein. The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate. Microvasc. Res., 33(2):211–23, 1987.

    Article  CAS  PubMed  Google Scholar 

  51. Turitto, V. T., and H. J. Weiss. Platelet and red cell involvement in mural thrombogensis. Ann. NY. Acad. Sci., 416:363–376, 1983.

    Article  CAS  PubMed  Google Scholar 

  52. Wang, J. C., S.-L. T. Normand, L. Mauri, and R. E. Kuntz. Coronary artery spatial distribution of acute myocardial infarction occlusions. Circulation, 110(3):278–84, 2004.

    Article  PubMed  Google Scholar 

  53. Waters, C. M., and E. C. Eckstein. Concentration profiles of platelet-sized latex beads for conditions relevant to hollow-fiber hemodialyzers. Artif. Organs, 14(1):7–13, 1990.

    Article  CAS  PubMed  Google Scholar 

  54. Windberger, U., A. Bartholovitsch, R. Plasenzotti, K. J. Korak, and G. Heinze. Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species : reference values and comparison of data. Exp. Physiol., 88(3):431–440, 2003.

    Article  CAS  PubMed  Google Scholar 

  55. Woldhuis, B., G. J. Tangelder, D. W. Slaaf, and R. S. Reneman. Concentration profile of blood platelets differs in arterioles and venules. Am. J. Phys. Heart C., 262(4):H1217–23, 1992.

    CAS  Google Scholar 

  56. Woldhuis, B., G. J. Tangelder, D. W. Slaaf, and R. S. Reneman. Influence of dextrans on platelet distribution in arterioles and venules. Pflügers Arch., 425(3–4):191–198, 1993.

    Article  CAS  PubMed  Google Scholar 

  57. Wootton, D. M., C. P. Markou, S. R. Hanson, and D. N. Ku. A mechanistic model of acute platelet accumulation in thrombogenic stenoses. Ann. Biomed. Eng., 29(4):321–329, 2001.

    Article  CAS  PubMed  Google Scholar 

  58. Xu, C., and D. M. Wootton. Platelet near-wall excess in porcine whole blood in artery-sized tubes under steady and pulsatile flow conditions. Biorheology, 41(2):113–25, 2004.

    PubMed  Google Scholar 

  59. Yamaguchi, S., T. Yamakawa, and H. Niimi. Cell-free plasma layer in cerebral microvessels. Biorheology, 29(2–3):251, 1992.

    CAS  PubMed  Google Scholar 

  60. Yeh, C., A. C. Calvez, and E. C. Eckstein. An estimated shape function for drift in a platelet-transport model. Biophys. J., 67(3):1252–9, 1994.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Yeo, K., and M. R. Maxey. Anomalous diffusion of wall-bounded non-colloidal suspensions in a steady shear flow. Europhys. Lett., 92(2):24008, 2010.

    Article  Google Scholar 

  62. Zhao, H., and E. S. G. Shaqfeh. Shear-induced platelet margination in a microchannel. Phys. Rev. E, 83(6):061924, 2011.

    Article  Google Scholar 

  63. Zhao, H., E. S. G. Shaqfeh, and V. Narsimhan. Shear-induced particle migration and margination in a cellular suspension. Phys. Fluids, 24(1):011902, 2012.

    Article  Google Scholar 

  64. Zhao, R., M. V. Kameneva, and J. F. Antaki. Investigation of platelet margination phenomena at elevated shear stress. Biorheology, 44(3):161–77, 2007.

    PubMed  Google Scholar 

  65. Zydney, A. L., and C. K. Colton. Augmented solute transport in the shear flow of a concentrated suspension. Physicochem. Hydrodyn., 10(1):77–96, 1988.

    CAS  Google Scholar 

Download references

Acknowledgments

This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. We are grateful to anonymous referees for their comments that improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrus K. Aidun.

Additional information

Associate Editor George Karniadakis oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrabadi, M., Ku, D.N. & Aidun, C.K. A Continuum Model for Platelet Transport in Flowing Blood Based on Direct Numerical Simulations of Cellular Blood Flow. Ann Biomed Eng 43, 1410–1421 (2015). https://doi.org/10.1007/s10439-014-1168-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1168-4

Keywords

Navigation