Skip to main content
Log in

Doping of polymer optical fiber cladding by Rhodamine 6G in aqueous solution at elevated temperature

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Solution-mediated doping of polymer optical fibers (POFs) is a facile approach to obtain functional POFs. However, previous studies revealed that POFs may be severely impaired by the doping solution based on methanol or other organic solvents, and the fiber loss could substantially increase due to the solution doping process. This study proposes to dope POFs in aqueous solution dissolved with Rhodamine 6G (Rh6G) at elevated temperature. It is found that absorbed water molecules in POFs lead to fiber expansion at elevated temperature and produce voids large enough for Rh6G to diffuse into the fiber. Experimental results show that Rh6G can be successfully doped into the cladding of POFs in water within the temperature range of 60–80 °C. It is also found that raising temperature can significantly accelerate the doping process and lead to more Rh6G molecules diffusing into POFs. Most importantly, loss of POFs after doping in water even up to 80 °C doesn’t increase, in contrast with doping in methanol or other organic solvents. In sum, doping of POFs in water is feasible and even preferable to organic solvents, though it requires that the dopant must be soluble in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bilro L, Alberto N, Pinto JL, Nogueira R (2012) Optical sensors based on plastic fibers. Sensors 12:12184–12207. https://doi.org/10.3390/s120912184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jin Y, Granville MA (2016) Polymer fiber optic sensors – a mini review of their synthesis and applications. J Biosens Bioelectron. https://doi.org/10.4172/2155-6210.1000194

    Article  Google Scholar 

  3. Shukla SK, Kushwaha CS, Guner T, Demir MM (2019) Chemically modified optical fibers in advanced technology: an overview. Opt Laser Technol 115:404–432. https://doi.org/10.1016/j.optlastec.2019.02.025

    Article  CAS  Google Scholar 

  4. Parola I, Zaremba D, Evert R et al (2018) High performance fluorescent fiber solar concentrators employing double-doped polymer optical fibers. Sol Energy Mater Sol Cells 178:20–28. https://doi.org/10.1016/j.solmat.2018.01.013

    Article  CAS  Google Scholar 

  5. He J, Chan W-K, Cheng X et al (2018) Experimental and theoretical investigation of the polymer optical fiber random laser with resonant feedback. Adv Opt Mater 6:1701187. https://doi.org/10.1002/adom.201701187

    Article  CAS  Google Scholar 

  6. Parola I, Arrospide E, Recart F et al (2017) Fabrication and characterization of polymer optical fibers doped with perylene-derivatives for fluorescent lighting applications. Fibers 5:28. https://doi.org/10.3390/fib5030028

    Article  CAS  Google Scholar 

  7. Kamimura S, Furukawa R (2017) Strain sensing based on radiative emission-absorption mechanism using dye-doped polymer optical fiber. Appl Phys Lett 111:063301. https://doi.org/10.1063/1.4998738

    Article  CAS  Google Scholar 

  8. Jaramillo-Ochoa L, Narro-García R, Ocampo MA, Quintero-Torres R (2017) High stability of polymer optical fiber with dye doped cladding for illumination systems. J Lumin 184:205–210. https://doi.org/10.1016/j.jlumin.2016.12.039

    Article  CAS  Google Scholar 

  9. Narro-García R, Quintero-Torres R, Domínguez-Juárez JL, Ocampo MA (2016) Polymer optical fiber with Rhodamine doped cladding for fiber light systems. J Lumin 169:295–300. https://doi.org/10.1016/j.jlumin.2015.09.017

    Article  CAS  Google Scholar 

  10. Kuriki K, Kobayashi T, Imai N et al (2000) High-efficiency organic dye-doped polymer optical fiber lasers. Appl Phys Lett 77:331–333. https://doi.org/10.1063/1.126967

    Article  CAS  Google Scholar 

  11. Jiang C, Kuzyk MG, Ding J-L et al (2002) Fabrication and mechanical behavior of dye-doped polymer optical fiber. J Appl Phys 92:4–12. https://doi.org/10.1063/1.1481774

    Article  CAS  Google Scholar 

  12. Liang H, Zhang Q, Zheng Z et al (2004) Optical amplification of Eu(DBM)_3Phen-doped polymer optical fiber. Opt Lett 29:477. https://doi.org/10.1364/OL.29.000477

    Article  CAS  PubMed  Google Scholar 

  13. Large MCJ, Ponrathnam S, Argyros A et al (2004) Solution doping of microstructured polymer optical fibres. Opt Express 12:1966. https://doi.org/10.1364/OPEX.12.001966

    Article  CAS  PubMed  Google Scholar 

  14. Stajanca P, Topolniak I, Pötschke S, Krebber K (2018) Solution-mediated cladding doping of commercial polymer optical fibers. Opt Fiber Technol 41:227–234. https://doi.org/10.1016/j.yofte.2018.02.008

    Article  CAS  Google Scholar 

  15. Ayesta I, Azkune M, Arrospide E et al (2018) Fabrication of active polymer optical fibers by solution doping and their characterization. Polymers 11:52. https://doi.org/10.3390/polym11010052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang ZF, Ye F, Ma X et al (2020) Accelerated doping of trans-4-stilbenemethanol into polymer optical fibers by binary non-solvent/solvent mixtures. Opt Fiber Technol 58:102265. https://doi.org/10.1016/j.yofte.2020.102265

    Article  CAS  Google Scholar 

  17. Turner DT (1982) Polymethyl methacrylate plus water: sorption kinetics and volumetric changes. Polymer 23:197–202. https://doi.org/10.1016/0032-3861(82)90300-7

    Article  CAS  Google Scholar 

  18. Kusy RP, Whitley JQ, Kalachandra S (2001) Mechanical properties and interrelationships of poly(methyl methacrylate) following hydration over saturated salts. Polymer 42:2585–2595. https://doi.org/10.1016/S0032-3861(00)00613-3

    Article  CAS  Google Scholar 

  19. Unemori M (2003) Water absorption of poly(methyl methacrylate) containing 4-methacryloxyethyl trimellitic anhydride. Biomaterials 24:1381–1387. https://doi.org/10.1016/S0142-9612(02)00521-5

    Article  CAS  PubMed  Google Scholar 

  20. Delpino Gonzales O, Nicassio A, Eliasson V (2016) Evaluation of the effect of water content on the stress optical coefficient in PMMA. Polym Test 50:119–124. https://doi.org/10.1016/j.polymertesting.2016.01.004

    Article  CAS  Google Scholar 

  21. Atarashi H, Hirai T, Hori K et al (2013) Uptake of water in as-spun poly(methyl methacrylate) thin films. RSC Adv 3:3516. https://doi.org/10.1039/c3ra23066j

    Article  CAS  Google Scholar 

  22. Ishiyama C, Higo Y (2002) Effects of humidity on Young’s modulus in poly(methyl methacrylate). J Polym Sci Part B Polym Phys 40:460–465. https://doi.org/10.1002/polb.10107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from Liupanshan Resource Engineering Research Center of Ningxia Normal University (HGZD21-01), Guyuan Talent Project (Development of innovation team for utilization of Chinese medicinal materials resources in Liupanshan area) from Guyuan Science and Technology Bureau, and Ningxia Excellent Talent Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Feng Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, C., Ma, C., Han, X. et al. Doping of polymer optical fiber cladding by Rhodamine 6G in aqueous solution at elevated temperature. Polym. Bull. 80, 3395–3403 (2023). https://doi.org/10.1007/s00289-022-04224-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04224-z

Keywords

Navigation