Skip to main content
Log in

Effect of compound coupling agent treatment on mechanical property and water absorption of hollow glass microspheres/epoxy composite

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Hollow glass microspheres (HGMs), as a reinforcing material to prepare lightweight high-performance composites, have excellent mechanical properties. However, the composites prepared by simply mixing hollow glass microspheres with polymer resin have poor performance. In this study, compound coupling agent-modified HGM/EP composites were prepared by casting process with two silane coupling agents as compound coupling agents. Scanning electron microscopy and infrared (IR) spectroscopy were used to characterize the treated HGM. Meanwhile density, water absorption behavior, and mechanical properties of the modified HGM-filled epoxy composites were examined. It is found that the compound coupling agent could effectively improve the interfacial bonding between HGM and the matrix resin. A new chemical bond was formed between HGM and EP, which was confirmed by IR spectroscopy. Compared with their untreated counterparts, the composites treated with the complex coupling agent exhibited excellent mechanical properties, along with lower density and lower water absorption.

Graphical abstract

The composites prepared by treating hollow glass microspheres with mixed coupling agents showed improved properties in all the cases. The mechanical properties of the composites prepared using No. HGM-1 reached the maximum with tensile strength of 36.38 MPa, tensile modulus of 2.383 GPa, flexural strength of 49.82 MPa, flexural modulus of 1.558 GPa, and compressive strength of 98.14 MPa. Our strategy opens a new way to fabricate composites with enhanced mechanical performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Abdelmouleh, S. Boufi, M. Belgacem, A. Dufresne, Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos. Sci. Technol. 67(7–8), 1627–1639 (2007)

    Article  CAS  Google Scholar 

  2. S. Anirudh, C.G. Jayalakshmi, A. Anand, B. Kandasubramanian, S.O. Ismail, Epoxy/hollow glass microsphere syntactic foams for structural and functional application—a review. Eur. Polym. J. 171, 111163 (2022)

    Article  CAS  Google Scholar 

  3. H.K. Bas, W. Jin, N. Gupta. Chemical stability of hollow glass microspheres in cementitious syntactic foams. Cem. Concr. Compos. 118, 103928 (2021)

    Article  CAS  Google Scholar 

  4. J.K. Carson, Thermal diffusivity and thermal conductivity of dispersed glass sphere composites over a range of volume fractions. Int. J. Thermophys. 39, 1–11 (2018)

    Article  CAS  Google Scholar 

  5. K.R. Dando, D.R. Salem, The effect of nano-additive reinforcements on thermoplastic microballoon epoxy syntactic foam mechanical properties. J. Compos. Mater. 52(7), 971–980 (2017)

    Article  Google Scholar 

  6. X. Dong, M. Wang, X. Tao, J. Liu, A. Guo, Properties of heat resistant hollow glass microsphere/phosphate buoyancy materials with different coatings. Ceram. Int. 46(1), 415–420 (2020)

    Article  CAS  Google Scholar 

  7. N. Gupta, R. Nagorny, Tensile properties of glass microballoon-epoxy resin syntactic foams. J. Appl. Polym. Sci. 102(2), 1254–1261 (2006)

    Article  CAS  Google Scholar 

  8. N. Gupta, R. Ye, M. Porfiri, Comparison of tensile and compressive characteristics of vinyl ester/glass microballoon syntactic foams. Compos. B Eng. 41(3), 236–245 (2010)

    Article  Google Scholar 

  9. R. Huang, P. Li, Elastic behaviour and failure mechanism in epoxy syntactic foams: the effect of glass microballoon volume fractions. Compos. B Eng. 78, 401–408 (2015)

    Article  CAS  Google Scholar 

  10. E. Zegeye, A.K. Ghamsari, E. Woldesenbet, Mechanical properties of graphene platelets reinforced syntactic foams. Compos. B Eng. 60, 268–273 (2014)

    Article  CAS  Google Scholar 

  11. R. Ciardiello, L.T. Drzal, G. Belingardi, Effects of carbon black and graphene nano-platelet fillers on the mechanical properties of syntactic foam. Compos. Struct. 178, 9–19 (2017)

    Article  Google Scholar 

  12. C. Huang, Z. Huang, X. Lv, G. Zhang, Q. Wang, B. Wang, Surface modification of hollow glass microsphere with different coupling agents for potential applications in phenolic syntactic foams. J. Appl. Polym. Sci. 134(4) (2017)

  13. P. Niazi, M. Javanbakht, M. Karevan, M.R. Tavakoli, Experimental and computational study of the thermal conductivity of polymeric micro spheres/polyester thermal insulating coatings. Polym. Bull. 80(4), 4387–4406 (2023)

    Article  CAS  Google Scholar 

  14. Z. Yousaf, M. Smith, P. Potluri, W. Parnell, Compression properties of polymeric syntactic foam composites under cyclic loading. Compos. Part B Eng. 186, 107764 (2020)

    Article  CAS  Google Scholar 

  15. Y. Zhou, Y. Wang, M. Fan, Incorporation of tyre rubber into wood plastic composites to develop novel multifunctional composites: interface and bonding mechanisms. Ind. Crops Prod. 141, 111788 (2019)

    Article  CAS  Google Scholar 

  16. N. Gupta, S.E. Zeltmann, V.C. Shunmugasamy, D. Pinisetty, Applications of polymer matrix syntactic foams. Jom. 66(2), 245–254 (2013)

    Article  Google Scholar 

  17. B. Yalcin, S.E. Amos, A.S. D’Souza, C.M. Clemons, I.S. Gunes, T.K. Ista, Improvements in processing characteristics and engineering properties of wood flour-filled high density polyethylene composite sheeting in the presence of hollow glass microspheres. J. Plast. Film Sheet. 28(2), 165–180 (2012)

    Article  CAS  Google Scholar 

  18. M. Imran, A. Rahaman, S. Pal, Morphology and mechanical characterization of carbon nanotubes/epoxy based material filled with hollow glass microsphere. Mater. Res. Express. 7(2), 025307 (2020)

    Article  CAS  Google Scholar 

  19. R.L. Poveda, N. Gupta, Carbon-nanofiber-reinforced syntactic foams: compressive properties and strain rate sensitivity. JOM 66(1), 66–77 (2013)

    Article  Google Scholar 

  20. K. Shahapurkar, M. Doddamani, G.C. Mohan Kumar, N. Gupta, Effect of cenosphere filler surface treatment on the erosion behavior of epoxy matrix syntactic foams. Polym. Compos. 40(6), 2109–2118 (2018)

    Article  Google Scholar 

  21. Y. Ma, Y. Zhou, Y. Sun, H. Chen, Z. Xiong, X. Li et al., Tunable magnetic properties of Fe3O4/rGO/PANI nanocomposites for enhancing microwave absorption performance. J. Alloy. Compd. 796, 120–130 (2019)

    Article  CAS  Google Scholar 

  22. D. Lu, Q. Gao, X. Wu, Y. Fan, ZnO nanostructures decorated hollow glass microspheres as near infrared reflective pigment. Ceram. Int. 43(12), 9164–9170 (2017)

    Article  CAS  Google Scholar 

  23. J. Yuan, Z. An, J. Zhang, Effects of hollow microsphere surface property on the mechanical performance of high strength syntactic foams. Compos. Sci. Technol. 199, 108309 (2020)

    Article  CAS  Google Scholar 

  24. M. Doddamani, Effect of surface treatment on quasi-static compression and dynamic mechanical analysis of syntactic foams. Compos. B Eng. 165, 365–378 (2019)

    Article  CAS  Google Scholar 

  25. R. Li, P. Wang, P. Zhang, G. Fan, G. Wang, X. Ouyang et al., Surface modification of hollow glass microsphere and its marine-adaptive composites with epoxy resin. Adv. Compos. Lett. 29, 1–8 (2020)

    Article  Google Scholar 

  26. H. Yang, Y. Jiang, H. Liu, D. Xie, C. Wan, H. Pan et al., Mechanical, thermal and fire performance of an inorganic-organic insulation material composed of hollow glass microspheres and phenolic resin. J. Colloid Interface Sci. 530, 163–170 (2018)

    Article  CAS  PubMed  Google Scholar 

  27. C. Zhao, S. Diao, Y. Yuan, M. Wang, Preparation and properties of hollow glass microsphere/silicone rubber composite material with the transition layer of silicone resin. SILICON 13(2), 517–522 (2020)

    Article  Google Scholar 

  28. R. Li, G. Fan, P. Wang, X. Ouyang, N. Ma, H. Wei, Effects of silane coupling agent modifications of hollow glass microspheres on syntactic foams with epoxy matrix. Polym. Polym. Compos. 29(9 suppl), S1191–S1203 (2021)

    CAS  Google Scholar 

  29. M. Jiang, Y. Xiong, B. Xue, Q. Zhang, Q. Wan, H. Zhao, Multi-layer graphene oxide synergistically modified by two coupling agents and its application in reinforced natural rubber composites. RSC Adv. 8(52), 29847–29854 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Y. Hou, M. Gao, R. An et al., Surface modification of oriented glass fibers for improving the mechanical properties and flame retardancy of polyamide 12 composites printed by powder bed fusion. Addit. Manuf. 62, 103195 (2023)

    CAS  Google Scholar 

  31. J. Chen, L. Zhao, K. Zhou, Improvement in the mechanical performance of multi jet fusion–printed aramid fiber/polyamide 12 composites by fiber surface modification. Addit. Manuf. 51, 102576 (2022)

    CAS  Google Scholar 

  32. C. Deng, J. Weng, K. Duan et al., Preparation and mechanical property of poly (ε-caprolactone)–matrix composites containing nano-apatite fillers modified by silane coupling agents. J. Mater. Sci. Mater. Med. 21, 3059–3064 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. Z. Zhu, J. Wang, Y. Liu et al., Effect of hollow glass microspheres with different contents and types on properties of polypropylene composites. ChemistrySelect 7(48), e202202963 (2022)

    Article  CAS  Google Scholar 

  34. C. Lu, H. Shao, N. Chen et al., Surface modification of polyimide fibers for high-performance composite by using oxygen plasma and silane coupling agent treatment. Text. Res. J. 92(23–24), 4899–4911 (2022)

    Article  CAS  Google Scholar 

  35. Y. Guo, Z. Zhang, Z. Cao, D. Wang, Wear behavior of hollow glass beads (HGB) reinforced nitrile butadiene rubber: effects of silane coupling agent and filler content. Mater. Today Commun. 19, 366–373 (2019)

    Article  CAS  Google Scholar 

  36. R.K. Goyal, A.S. Kapadia, Study on phenyltrimethoxysilane treated nano-silica filled high performance poly(etheretherketone) nanocomposites. Compos. B Eng. 50, 135–143 (2013)

    Article  CAS  Google Scholar 

  37. J. Sang, S. Aisawa, K. Miura, H. Hirahara, O. Jan, P. Jozef et al., Adhesion of carbon steel and natural rubber by functionalized silane coupling agents. Int. J. Adhes. Adhes. 72, 70–74 (2017)

    Article  CAS  Google Scholar 

  38. S.Y. Lee, J.S. Kim, S.H. Lim, S.H. Jang, D.H. Kim, N.H. Park et al., The investigation of the silica-reinforced rubber polymers with the methoxy type silane coupling agents. Polymers (Basel) 12(12), 3058 (2020)

    Article  PubMed  Google Scholar 

  39. X. Wang, C. Zhang, Q. Wu, H. Zhu, Y. Liu, Thermal properties of metakaolin-based geopolymer modified by the silane coupling agent. Mater. Chem. Phys. 267, 124655 (2021)

    Article  CAS  Google Scholar 

  40. K. Yung, B. Zhu, T. Yue, C. Xie, Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites. Compos. Sci. Technol. 69(2), 260–264 (2009)

    Article  CAS  Google Scholar 

  41. Y. Min, Y. Fang, X. Huang, Y. Zhu, W. Li, J. Yuan et al., Surface modification of basalt with silane coupling agent on asphalt mixture moisture damage. Appl. Surf. Sci. 346, 497–502 (2015)

    Article  CAS  Google Scholar 

  42. H. Nakatani, K. Iwakura, K. Miyazaki, N. Okazaki, M. Terano, Effect of chemical structure of silane coupling agent on interface adhesion properties of syndiotactic polypropylene/cellulose composite. J. Appl. Polym. Sci. 119(3), 1732–1741 (2011)

    Article  CAS  Google Scholar 

  43. S. Shokoohi, A. Arefazar, R. Khosrokhavar, Silane coupling agents in polymer-based reinforced composites: a review. J. Reinf. Plast. Compos. 27(5), 473–485 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (Grant no. 2021-K19), the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (Grant no. SKL202003SIC), the Key Technologies R&D Program of Anhui Province of China (Grant no. 202104a05020033). Acknowledge is also to the support of General Projects of Shenzhen Stable Development (SZWD2021003) and Guangdong Basic and Applied Basic Research Foundation (2020B1515120002), the University Engineering Research Center of Crystal Growth and Applications of Guangdong Province (2020GCZX005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Liu, Y., Xian, G. et al. Effect of compound coupling agent treatment on mechanical property and water absorption of hollow glass microspheres/epoxy composite. Macromol. Res. 31, 771–779 (2023). https://doi.org/10.1007/s13233-023-00160-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-023-00160-7

Keywords

Navigation