Skip to main content
Log in

Synthesis and Characterization of Compound Coupling Agent-Modified Hollow Glass Microspheres/Epoxy Composites

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, hollow glass microsphere/epoxy composites modified with compound coupling agent of titanate (CS201) and silane (KH540) were prepared and characterized. The addition of the compound coupling agent improves the interfacial bonding between the microbeads and the resin matrix. Scanning electron microscopy results indicated that the compound coupling agent can effectively reduce the number of voids between the microbeads and the resin. FTIR and XPS spectra showed that new chemical bonds were formed between the hollow glass microspheres and resin, which enhanced the interfacial bonding between them. By testing the water absorption and mechanical properties of the composites, it found that the addition of the hybrid coupling agent can reduce the water absorption to a minimum level of 1.184%. Due to the improvement of interfacial compatibility, mechanical properties of the composites were enhanced, (with tensile strength of 43.03 MPa, bending strength of 44.56 MPa, bending modulus of 1407 MPa and compressive strength of 81.55 MPa). When the content of the coupling agent was 5% and the volume ratio of CS201 to KH540 was 1:1, the synergistic enhancement effect was the most significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Date availability

The raw data required to reproduce these findings are available from the corresponding author upon request.

References

  1. R. Atchudan, A. Pandurangan, J. Joo, J. Nanosci. Nanotechnol. 15, 4255 (2015)

    CAS  PubMed  Google Scholar 

  2. Q. Xiang, F. Xiao, Constr. Build. Mater. 235, 117529 (2020)

    CAS  Google Scholar 

  3. Y. Zhang, C. Zhao, J. Liu, H. Na, Eur. Polym. J. 109, 110 (2018)

    CAS  Google Scholar 

  4. J. Mo, L. Xia, P. Pan, B. Shentu, Z. Weng, J. Appl. Polym. Sci. 127, 4879 (2013)

    CAS  Google Scholar 

  5. G. Wu, J. Gu, X. Zhao, J. Appl. Polym. Sci. 105, 1118 (2007)

    CAS  Google Scholar 

  6. X.F. Wu, J.W. Li, F.J. Xiao, Z.Y. Hao, X.H. Xu, J. Macromol. Sci. B 52, 355 (2012)

    Google Scholar 

  7. H. Jin, B. Yang, F.-L. Jin, S.-J. Park, J. Ind. Eng. Chem. 25, 9 (2015)

    CAS  Google Scholar 

  8. S. Li, F. Wang, Y. Wang, J. Wang, J. Ma, J. Xiao, J. Mater. Sci. 43, 2653 (2008)

    CAS  Google Scholar 

  9. M. Imran, A. Rahaman, A.H. Shaik, M.R. Chandan, J. Cell. Plast. 56, 547 (2020)

    CAS  Google Scholar 

  10. N.M. Bobkova, E.E. Trusova, V.V. Savchin, E.N. Sabadakha, Y.G. Pavlyukevich, Glass Ceram. 76, 401 (2020)

    CAS  Google Scholar 

  11. B. Yalcin, S.E. Amos, A.S. D’Souza, C.M. Clemons, I.S. Gunes, T.K. Ista, J. Plast. Film. Sheet. 28, 165 (2012)

    CAS  Google Scholar 

  12. R. Li, G. Fan, X. Ouyang, G. Wang, H. Wei, Compos. Adv. Mater. 30, 263498332110081 (2021)

    Google Scholar 

  13. G. Giannakopoulos, K. Masania, A.C. Taylor, J. Mater. Sci. 46, 327 (2010)

    Google Scholar 

  14. A. Bajpai, B. Wetzel, K. Friedrich, Express Polym. Lett. 14, 384 (2020)

    CAS  Google Scholar 

  15. F. Lin, Y. Xiang, H.-S. Shen, Compos. B. Eng. 111, 261 (2017)

    CAS  Google Scholar 

  16. B. Yu, Y. Shi, B. Yuan, S. Qiu, W. Xing, W. Hu, L. Song, S. Lo, Y. Hu, J. Mater. Chem. A 3, 8034 (2015)

    CAS  Google Scholar 

  17. J. Li, X. Luo, X. Lin, Mater. Des. 46, 902 (2013)

    CAS  Google Scholar 

  18. B. Zhu, J. Ma, J. Wang, J. Wu, D. Peng, J. Reinf. Plast. Compos. 31, 1311 (2012)

    Google Scholar 

  19. C. Huang, Z. Huang, X. Lv, G. Zhang, Q. Wang, B. Wang, J. Appl. Polym. Sci. 134, 4 (2017)

    Google Scholar 

  20. Y. Ma, Y. Du, J. Zhao, X. Yuan, X. Hou, Polym (Basel) 12, 7 (2020)

    Google Scholar 

  21. J. Yuan, Z. An, J. Zhang, Compos. Sci. Technol. 199, 126340 (2020)

    Google Scholar 

  22. M.H. Sliem, K. Shahzad, V.N. Sivaprasad, R.A. Shakoor, A.M. Abdullah, O. Fayyaz, R. Kahraman, M.A. Umer, Surf. Coat. Technol. 403, 126340 (2020)

    CAS  Google Scholar 

  23. Y. Chen, J. Wang, S. Wen, C. Wang, Z. Zhao, W. Li, Ceram. Int. 47, 23507 (2021)

    CAS  Google Scholar 

  24. A.K. Mehrjerdi, B.A. Mengistu, D. Åkesson, M. Skrifvars, J. Appl. Polym. Sci. 131, 13 (2014)

    Google Scholar 

  25. C. Ding, Y. Zhang, N. Zhang, X. Wang, Q. Wei, Y. Zhang, Surf. Interface Anal. 52, 645 (2020)

    CAS  Google Scholar 

  26. L. Zhang, M. Zhong, H. Ge, Appl. Surf. Sci. 258, 1551 (2011)

    CAS  Google Scholar 

  27. S.H. Han, H.J. Oh, H.C. Lee, S.S. Kim, Compos. B. Eng. 45, 172 (2013)

    CAS  Google Scholar 

  28. M. Jiang, Y. Xiong, B. Xue, Q. Zhang, Q. Wan, H. Zhao, RSC Adv. 8, 29847 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. X. Liu, X. Ma, L. Zhu, L. Zhu, Ind. Crops and Prod. 164, 113352 (2021)

    CAS  Google Scholar 

  30. Z.L. Zhu, Y Liu, G.Y. Xian, Y Wang, C.M. Wu, X.B. Peng, J.X. Wang, L.B. Kong, Macromol. Res. (2023).

  31. H.N. Minh, N.T. Chinh, T.T.T. Van, D.X. Thang, T. Hoang, J. Nanosci. Nanotechnol. 18, 36245 (2018)

    Google Scholar 

  32. X. Yu, G. Cheng, G. Ding, C. Xu, Asian J. Chem. 26, 1729 (2014)

    CAS  Google Scholar 

  33. C. Ding, Y. Zhang, X. Di, N. Zhang, Y. Zhang, X. Wang, Environ. Technol. 43, 3283 (2022)

    CAS  PubMed  Google Scholar 

  34. J. Su, J. Zhang, RSC Adv. 5, 78478 (2015)

    Google Scholar 

  35. W. Wu, F. Chen, J. Renew. Mater. 8, 905 (2020)

    CAS  Google Scholar 

  36. Z. Jia, S. Chen, J. Zhang, J. Macromol. Sci. B 51, 2449 (2012)

    CAS  Google Scholar 

  37. Z.T. Yao, T. Chen, H.Y. Chen, M.S. Xia, Y. Ye, H. Zheng, J. Hazard. Mater. 262, 212 (2013)

    CAS  PubMed  Google Scholar 

  38. Y.P. Zhang, C. Ding, N. Zhang, X.Y. Di, Y. Li, Y.H. Zhang, Mater. Chem. Phys. 292, 126834 (2022)

    CAS  Google Scholar 

  39. M.B. Kulkarni, P.A. Mahanwar, J. Thermoplast. Compos. Mater. 29, 344 (2014)

    Google Scholar 

  40. B. Qi, Z.K. Yuan, S.R. Lu, K. Liu, L.P. Yang, J.H. Yu, Fibers. Polym. 15, 326 (2014)

    CAS  Google Scholar 

  41. S. Rakmae, Y. Ruksakulpiwat, W. Sutapun, N. Suppakarn, Mater. Sci. Eng. C Mater. Biol. Appl. 32, 1428 (2012)

    CAS  PubMed  Google Scholar 

  42. W. Liu, C. Hu, W. Zhang, Z. Liu, J. Shu, J. Gu, Prog. Org. Coat. 148, 105833 (2020)

    CAS  Google Scholar 

  43. H.G. Wang, K.N. Yang, Z.Z. Guan, S.S. Gao, Fibers. Polym. 24, 2173 (2023)

    Google Scholar 

  44. W.Y. Zhou, D.M. Yu, J. Compos. Mater. 45, 1981 (2011)

    CAS  Google Scholar 

  45. N. Petchwattana, J. Sanetuntikul, SILICON 10, 287 (2018)

    CAS  Google Scholar 

  46. N.W. Elshereksi, A. Muchtar, C.H. Azhari, J. Thermoplast. Compos. 35, 2265 (2020)

    Google Scholar 

  47. H. Chai, X.H. Wang, W. Rehman, X.Y. Yang, T. Meng, Plast. Rubber. Compos. 52, 47 (2021)

    Google Scholar 

  48. Y.P. Zhang, C. Ding, N. Zhang, C. Chen, X.Y. Di, Y.H. Zhang, Constr. Build. Mater. 307, 124933 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (Grant no. 2021-K19), the Opening Project of State Key Laboratory of High-Performance Ceramics and Superfine Microstructure (Grant nos. SKL202003SIC), the Key Technologies R&D Program of Anhui Province of China (Grant no. 202104a05020033). Financial supports through the General Projects of Shenzhen Stable Development (SZWD2021003), Guangdong Basic and Applied Basic Research Foundation (2020B1515120002), the University Engineering Research Center of Crystal Growth and Applications of Guangdong Province (2020GCZX005) and the Foundation of Anhui International Joint Research Center for Nano Carbon-based Materials and Environmental Health (NCMEH2022Z02) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Liu.

Ethics declarations

Conflict of Interest

The authors declare no potential conflict of interest in relation with the research, authorship, and/or publication of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Liu, Y., Xian, G. et al. Synthesis and Characterization of Compound Coupling Agent-Modified Hollow Glass Microspheres/Epoxy Composites. Fibers Polym 24, 3345–3353 (2023). https://doi.org/10.1007/s12221-023-00305-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00305-6

Keywords

Navigation