Skip to main content
Log in

Hollow glass microspheres/piassava fiber-reinforced homo- and co-polypropylene composites: preparation and properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

To meet current requirements for the development of novel materials possessing high specific properties and low environmental impact, this paper deals with the study of the incorporation of hollow glass microspheres (HGM) and piassava fibers into homo- (PPH) and co-polypropylene (PPC) matrices. Various compositions of HGM/piassava fiber-reinforced PP composites were extruded and injection molded to obtain their rheological, mechanical and morphological properties. The formulation with 60 wt% of PPC or PPH, 20 % wt of coupling agent, 5 wt% of HGM and 15 wt% of piassava fiber reached the highest tensile and flexural modulus for both PPH- and PPH-based composites. Furthermore, the PPC-60/20/5/15 composition presented flexural strength higher than that of the neat PPC. Morphological analysis revealed that the incorporation of the coupling agent enhanced adhesion between mineral filler and piassava fiber embedded into PPH or PPC matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Saha P, Chowdhury S, Roy D, Adhikari B, Kim JK, Thomas S (2016) A brief review on the chemical modifications of lignocellulosic fibers for durable engineering composites. Polym Bull 73(2):587–620

    Article  CAS  Google Scholar 

  2. Almeida Júnior JHS, Amico SC, Botelho EC, Amado FDR (2013) Hybridization effect on the mechanical properties of curaua/glass fiber composites. Compos Part B Eng 55:492–497

    Article  Google Scholar 

  3. Karaduman Y, Onal L, Rawal A (2015) Effect of stacking sequence on mechanical properties of hybrid flax/jute fibers reinforced thermoplastic composites. Polym Compos 36(12):2167–2173

    Article  CAS  Google Scholar 

  4. Pigatto C, Almeida Júnior JHS, Ornaghi Júnior HL, Rodríguez AL, Mählmann CM, Amico SC (2012) Study of polypropylene/ethylene-propylene-diene monomer blends reinforced with sisal fibers. Polym Compos 33(12):2262–2270

    Article  CAS  Google Scholar 

  5. Doumbia AS, Castro M, Jouannet D, Kervoëlen A, Falher T, Cauret L, Bourmaud A (2015) Flax/polypropylene composites for lightened structures: multiscale analysis of process and fibre parameters. Mater Des 87:331–341

    Article  CAS  Google Scholar 

  6. Pedrazzoli D, Pegoretti A (2014) Long-term creep behavior of polypropylene/fumed silica nanocomposites estimated by time-temperature and time-strain superposition approaches. Polym Bull 71(9):2247–2268

    Article  CAS  Google Scholar 

  7. Hu Y, Mei R, An Z, Zhang J (2013) Silicon rubber/hollow glass microsphere composites: influence of broken hollow glass microsphere on mechanical and thermal insulation property. Compos Sci technol 79:64–69

    Article  CAS  Google Scholar 

  8. Budov VV (1994) Hollow glass microspheres. Use, properties, and technology (review). Glass Ceram 51(7–8):7–11

    Google Scholar 

  9. Li J, Luo X, Lin X (2013) Preparation and characterization of hollow glass microsphere reinforced poly(butylene succinate) composites. Mater Des 46:902–909

    Article  CAS  Google Scholar 

  10. Almeida Júnior JHS, Ornaghi Júnior HL, Amico SC, Amado FDR (2012) Study of hybrid intralaminate curaua/glass composites. Mater Des 42:111–117

    Article  Google Scholar 

  11. Ornaghi HL Jr, Zattera AJ, Amico SC (2015) Dynamic mechanical properties and correlation with dynamic fragility of sisal reinforced composites. Polym Compos 36(1):161–166

    Article  CAS  Google Scholar 

  12. Liu L, Yu J, Cheng L, Qu W (2009) Mechanical properties of poly(butylene succinate) (PBS) biocomposites reinforced with surface modified jute fibre. Compos A 40:669–674

    Article  Google Scholar 

  13. El-Sabbagh A, Steuernagel L, Ziegmann G (2013) Ultrasonic testing of natural fibre polymer composites: effect of fibre content, humidity, stress on sound speed and comparison to glass fibre polymer composites. Polym Bull 70(2):371–390

    Article  CAS  Google Scholar 

  14. Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18(4):351–363

    Article  CAS  Google Scholar 

  15. Elzubair A, Bonelli CMC, Suarez JCM, Mano EB (2007) Morphological, structural, thermal and mechanical characterization of piassava fibers. J Nat Fibers 4(2):13–31

    Article  CAS  Google Scholar 

  16. Elzubair A, Suarez JCM (2012) Mechanical behavior of recycled polyethylene/piassava fiber composites. Mat Sci Eng A Struct 557:29–35

    Article  CAS  Google Scholar 

  17. Nascimento DCO, Ferreira AS, Monteiro SN, Aquino RCMP, Satyanarayana GK (2012) Studies on the characterization of piassava fibers and their epoxy composites. Compos Part A Appl S 43(3):353–362

    Article  CAS  Google Scholar 

  18. Silva LV, Almeida JHS Jr, Angrizani CC, Amico SC (2013) Short beam strength of curaua, sisal, glass and hybrid composites. J Reinf Plast Compos 32(3):197–206

    Article  Google Scholar 

  19. Ornaghi Júnior HL, Silva HSP, Zattera AJ, Amico SC (2011) Hybridization effect on the mechanical and dynamic mechanical properties of curaua composites. Mater Sci Eng A 528:7285–7289

    Article  Google Scholar 

  20. Doumbia AS, Bourmaud A, Jouannet D, Falher T, Orange F, Retoux R, Le Pluart L, Cauret L (2015) Hollow microspheres e poly-(propylene) blends: relationship between microspheres degradation and composite properties. Polym Degrad Stabil 114:146–153

    Article  CAS  Google Scholar 

  21. Liang JZ (2005) Tensile and flexural properties of hollow glass bead-filled ABS composites. J Elastom Plast 37(4):361–370

    Article  CAS  Google Scholar 

  22. Xiao J, Chen Y (2015) New micro-structure designs of a polypropylene (PP) composite with improved impact property. Mat Lett 152:200–212

    Article  Google Scholar 

  23. Zokaei S, Lesan Khosh RM, Bagheri R (2007) Study of scratch resistance in homo- and co-polypropylene filled with nanometric calcium carbonate. Mater Sci Eng A 445–446:526–536

    Article  Google Scholar 

  24. Patankar SN, Das A, Kranov YA (2009) Interface engineering via compatibilization in HDPE composite reinforced with sodium borosilicate hollow glass microspheres. Compos Part A Appl S 40:897–903

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CAPES and CNPq for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Humberto S. Almeida Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, T.E., Almeida, J.H.S., Amico, S.C. et al. Hollow glass microspheres/piassava fiber-reinforced homo- and co-polypropylene composites: preparation and properties. Polym. Bull. 74, 1979–1993 (2017). https://doi.org/10.1007/s00289-016-1819-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1819-8

Keywords

Navigation