Skip to main content
Log in

Effect of Multi-Level Microstructure on Local and Bulk Mechanical Properties in Micro-Injection Molded PC/PET Blend

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

This study introduces a method to investigate the relationship between the multi-level microstructures and mechanical properties of polymer blends prepared by micro-injection molding (µIM). Special morphological features were systematically researched. Polycarbonate (PC), poly(ethylene terephthalate) (PET), and PC/PET microparts all exhibit typical “skin-core” morphologies. The thickness of the core layer is much greater than that of the skin layer, and the thickness of the skin layer gradually decreases along the flow direction. Photoacoustic Fourier transform infrared spectroscopy records reveal that the PC molecular chain has the biggest orientation degree, followed by PC/PET and PET chains under the same µIM processing conditions. Moreover, the molecular chains orientation in the skin layer is more than 50% that in the core layer. Nanoindentation tests are conducted to study local mechanical properties. The higher modulus in the shear layer is affected to a greater extent by high shear action in comparison with the frozen and core layers. Uniaxial tensile testing demonstrates that the tensile strength of PC/PET micropart is 15.5% higher than that of the PET micropart, while the toughness is 16% higher than that of the PC microparts. In-situ, high- speed tensile imaging, combined with scanning electron microscopy micrographs of the fracture section, are used to study the fracture behaviors of the microparts. The results gathered in this paper may provide a theoretical basis and data to support the feasibility and efficiency of micro-injection molded polymer blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Maghsoudi, R. Jafari, G. Momen, and M. Farzaneh, Mater. Today Commun., 13, 126 (2017).

    Article  CAS  Google Scholar 

  2. M. Li, Q. Yang, M. Kong, Y. Huang, X. Liao, Y. Niu, and Z. Zhao, Polym. Adv. Technol, 29, 171 (2018).

    Article  CAS  Google Scholar 

  3. J. Nie, Q. Gao, J.-J. Qiu, M. Sun, A. Liu, L. Shao, J.-Z. Fu, P. Zhao, and Y. He, Biofabrication, 10, 035001 (2018).

    Article  Google Scholar 

  4. C. Ciofu and D. T. Mindru, Int. J. Mod. Manuf. Technol, 3604, 49 (2013).

    Google Scholar 

  5. L. Wang, Y. Zhang, L. Jiang, X. Yang, Y. Zhou, X. Wang, Q. Li, C. Shen, and L. S. Turng, J. Appl. Polym. Sci., 136, 47329 (2019).

    Article  Google Scholar 

  6. S. H. Hwang, D. J. Lee, H. R. Youn, Y. S. Song, and J. R. Youn, Macromol. Res., 23, 844 (2015).

    Article  CAS  Google Scholar 

  7. R. Hsissou, A. Elharfi, J. King Saud. Univ. Eng. Sci., 32, 235 (2020).

    Article  Google Scholar 

  8. H. Zhang, F. Fang, M. D. Gilchrist, and N. Zhang, Mater. Des., 177, 107829 (2019).

    Article  Google Scholar 

  9. L. Wang, Q. Li, W. Zhu, and C. Shen, Microsyst. Technol., 18, 2085 (2012).

    Article  Google Scholar 

  10. R. Hsissou, O. Dagdag, M. Berradi, M. Bouchti, M. Assouag, and A. Elharfi, Heliyon, 5, 2789 (2019).

    Article  Google Scholar 

  11. A. Schiffer and M. Kaiser, U.S. Patent 10,105,887 (2018).

  12. M. Babenko, J. Sweeney, P. Petkov, F. Lacan, S. Bigot, and B. Whiteside, Appl. Therm. Eng., 130, 865 (2018).

    Article  CAS  Google Scholar 

  13. N. Zhang, H. Zhang, C. Stallard, F. Fang, and M. D. Gilchrist, CIRP J. Manuf. Sci. Tec., 23, 20 (2018).

    Article  Google Scholar 

  14. J. Jiang, S. Wang, B. Sun, S. Ma, J. Zhang, Q. Li, and G.-H. Hu, Mater. Des., 88, 245 (2015).

    Article  CAS  Google Scholar 

  15. S. Shi, L. Wang, Y. Pan, C. Liu, X. Liu, Y. Li, J. Zhang, G. Zheng, and Z. Guo, Compos. B: Eng., 167, 362 (2019).

    Article  CAS  Google Scholar 

  16. A. Bekhta, R. Hsissou, and A. Elharfi, Sci. Rep., 10, 2461 (2020).

    Article  CAS  Google Scholar 

  17. R. Hsissou, M. Berradi, M. Bouchti, A. Bachiri, and A. Harfi, Polym. Bull., 76, 4859 (2019).

    Article  CAS  Google Scholar 

  18. J. Jiang, S. Wang, J. Hou, K. Zhang, X. Wang, Q. Li, and G. Liu, Mater. Des., 141, 132 (2018).

    Article  CAS  Google Scholar 

  19. S. H. Lee, T. H. Han, and S. H. Kim, Macromol. Res., 22, 782 (2014).

    Article  CAS  Google Scholar 

  20. S. M. Amininasab, P. Holakooei, Z. Shami, and M. Hassanzadeh, Macromol. Res., 26, 730 (2018).

    Article  CAS  Google Scholar 

  21. S. Kumar, M. Castro, I. Pillin, J.-F. Feller, S. Thomas, and Y. Grohens, Polym. Adv. Technol., 24, 487 (2013).

    Article  CAS  Google Scholar 

  22. I. M. Ward, P. D. Coates, and M. M. Dumoulin, Solid Phase Processing of Polymers, Hanser Publishers, Munich, Germany, 2000.

    Book  Google Scholar 

  23. N. Zhang, S. Y. Choi, and M. D. Gilchrist, Macromol. Mater. Eng., 299, 1362 (2014).

    Article  CAS  Google Scholar 

  24. C. Carrot, S. Mbarek, M. Jaziri, Y. Chalamet, C. Raveyre, and F. Prochazka, Macromol. Mater. Eng., 292, 693 (2007).

    Article  CAS  Google Scholar 

  25. D. Kyriacos, in Brydson’s Plastics Materials, Elsevier, 2017, pp 457–485.

  26. S.-Y. Park and M.-Y. Lyu, Macromol. Res., 26, 744 (2018).

    Article  CAS  Google Scholar 

  27. S. Shi, Y. Pan, B. Lu, G. Zheng, C. Liu, K. Dai, and C. Shen, Polymer, 54, 6843 (2013).

    Article  CAS  Google Scholar 

  28. J. Giboz, A.B. Spoelstra, G. Portale, T. Copponnex, H. E. Meijer, G. W. Peters, and P. Mele, J. Polym. Sci. B Polym. Phys., 49, 1470 (2011).

    Article  CAS  Google Scholar 

  29. R.-D. Chien, W.-R. Jong, and S.-C. Chen, J. Micromech. Microeng., 15, 1389 (2005).

    Article  Google Scholar 

  30. S. W. Kim and L. S. Turng, Polym. Eng. Sci., 46, 1263 (2006).

    Article  CAS  Google Scholar 

  31. K. H. Han, M. G. Jang, K. J. Juhn, C. Cho, and W. N. Kim, Macromol. Res., 26, 254 (2018).

    Article  CAS  Google Scholar 

  32. A. Al-Jabareen, S. Illescas, M.L. Maspoch, and O. Santana, J. Mater. Sci., 45, 6623 (2010).

    Article  CAS  Google Scholar 

  33. P. Zhao, W. Yang, X. Wang, J. Li, B. Yan, and J. Fu, Proc. Inst. Mech. Eng. B J. Eng. Manuf., 233, 204 (2019).

    Article  Google Scholar 

  34. B. F. Cheng, L. H. Wang, and Y. Z. You, Macromol. Res., 24, 811 (2016).

    Article  CAS  Google Scholar 

  35. F. Boerio, S. Bahl, and G. McGraw, J. Polym. Sci., Polym. Phys., 14, 1029 (1976).

    Article  CAS  Google Scholar 

  36. T. Andriollo, J. Thorborg, and J. Hattel, Model. Simul. Mater. Sc., 25, 045004 (2017).

    Article  Google Scholar 

  37. L. C. Van Breemen, T. A. Engels, E. T. Klompen, D. J. Senden, and L. E. Govaert, J. Polym. Sci. B: Polym. Phys., 50, 1757 (2012).

    Article  CAS  Google Scholar 

  38. D. A. S. Rambo, Y. Yao, F. de Andrade Silva, R. D. Toledo Filho, and B. Mobasher, Cem. Concr. Compos., 75, 51 (2017).

    Article  CAS  Google Scholar 

  39. L. Laiarinandrasana, N. Selles, O. Klinkova, T. F. Morgeneyer, H. Proudhon, and L. Helfen, Polym. Test., 55, 297 (2016).

    Article  CAS  Google Scholar 

  40. Y. Pan, S. Shi, W. Xu, G. Zheng, K. Dai, C. Liu, J. Chen, and C. Shen, J. Mater. Sci., 49, 1041 (2014).

    Article  CAS  Google Scholar 

  41. H. J. Hong, S. Haam, G. Lim, and J. H. Ryu, Macromol. Res., 28, 257 (2020).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Jiang.

Additional information

Supporting information

Informations are available regarding the experimental procedure and characterization for the molding window for µIM process (Figure S1), FTIR measurment (Figure S2), and tensile datas for microparts (Table S1). The materials are available via the Internet at http://www.springer.com/13233.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: The authors would like to express their gratitude to the School-enterprise Cooperation Project for domestic visiting engineers in colleges and universities in 2019 (FG2019217) and base of discipline innovation in Henan higher schools support. This work is also sponsored by the National Science Fund (11372286) and technological research project of Henan Province (202102210028).

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Jiang, J., Li, Z. et al. Effect of Multi-Level Microstructure on Local and Bulk Mechanical Properties in Micro-Injection Molded PC/PET Blend. Macromol. Res. 28, 939–947 (2020). https://doi.org/10.1007/s13233-020-8117-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8117-x

Keywords

Navigation