Skip to main content
Log in

Effect of Scale-Dependent Viscosity and Transesterification on Filling Behavior of Polycarbonate/Poly(ethylene terephthalate) Blends in Micro-Injection Molding

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

This study introduces a new scale-dependent viscosity model, in which transesterification reaction of polycarbonate/poly(ethylene terephthalate) (PC/PET) blends with various phase morphologies and micro-scale effects have been taken into account. It is found that a Power-law model can be used to quantitatively describe the relationship between the degree of transesterification and shear rate employed during compounding of PC and PET. A micro-scale viscosity model, which incorporates the micro-scale effects, has been developed by characterizing the flow using a double-barrel capillary rheometer with different microscale channels. For both neat PC and PC/PET blends, under the conditions of the constant shear rate and melt temperature, the shear viscosity dropped with decreasing capillary diameter because of the wall-slip effect. The proposed viscosity model based on the Cross equation can describe the variation of shear viscosity for PC/PET blends under both macro- and micro-scale conditions. Less than 7% average error is obtained between the model predictions and rheological experimental data. Filling simulation and micro-injection molding (µIM) short-shot experiments were conducted to validate the accuracy of the proposed viscosity model. For all the L9(34) design of experiment (DOE) molding trials, the average relative error under the micro-scale condition was 4.5±1.1%, which is much smaller than that of the average relative error under the macro-scale condition at 11.4±2.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Wang, L. Jiang, S. Li, Y. Zhang, D. Wang, Q. Li, and C. Shen, Polym. Adv. Technol., 31, 1463 (2020).

    Article  CAS  Google Scholar 

  2. E. Cabrera, J. M. Castro, Y. Y. Allen, and L. J. Lee, in Advanced Injection Molding Technologies, S-C. Chen and L-S. Turng, Eds., Hanser, Columbus, 2019, 349–377.

  3. D. Masato, M. Sorgato, P. Parenti, M. Annoni, and G. Lucchetta, J. Mater. Process. Technol., 246, 211 (2017).

    Article  CAS  Google Scholar 

  4. L. Meng, D. Wu, A. Kelly, M. Woodhead, and Y. Liu, J. Appl. Polym. Sci., 133, 43459 (2016).

    Article  Google Scholar 

  5. K. Maghsoudi, R. Jafari, G. Momen, and M. Farzaneh, Mater. Today Commun., 13, 126 (2017).

    Article  CAS  Google Scholar 

  6. Y. Qin, X. Han, K. Song, L. Wang, Y. Cheng, Z. Zhang, Q. Xue, N. Sun, J. Wang, B. Sun, B. Sarac, F. Spieckermann, G. Wang, I. Kaban, and J. Eckert, J. Mater. Res., 32, 2560 (2017).

    Article  CAS  Google Scholar 

  7. B. Anass, B. M’hamed, E. O. Rabie, E. H. Abdelhadi, T. Abdelhamid, K. R. Musa, D. Salim, R. Zakariaa, and D. A. Siginer, Polym. Adv. Technol., 31, 838 (2020).

    Article  CAS  Google Scholar 

  8. R. Surace, M. Sorgato, V. Bellantone, F. Modica, G. Lucchetta, and I. Fassi, J. Manuf. Process., 43, 105 (2019).

    Article  Google Scholar 

  9. D. Zhao, Y. Jin, and M. Wang, Polym. Eng. Sci., 52, 1806 (2012).

    Article  CAS  Google Scholar 

  10. R. Tao, T. Ng, Y. Su, and Z. Li, Phys. Fluids., 32, 052012 (2020).

    Google Scholar 

  11. J. He, S. S. Lee, and D. M. Kalyon, J. Rheol., 63, 19 (2019).

    Article  CAS  Google Scholar 

  12. B. Xu, K. Ooi, T. Wong, C. Liu, J. Micromech. Microeng., 9, 377 (1999).

    Article  CAS  Google Scholar 

  13. D. Yao, B. Kim, J. Micromech. Microeng., 12, 604 (2002).

    Article  CAS  Google Scholar 

  14. H. Zhang, F. Fang, M. D. Gilchrist, N. Zhang, Mater. Des., 177, 107829 (2019).

    Article  Google Scholar 

  15. W. Yu, S. Ruan, Z. Li, J. Gu, X. Wang, C. Shen and B. Chen, Int. J. Adv. Manuf. Technol., 103, 2929 (2019).

    Article  Google Scholar 

  16. M. Fischer, P. Pöhlmann, I. Kühnert. Polym. Test., 80, 106078 (2019).

    Article  CAS  Google Scholar 

  17. J. Jiang, S. Wang, S. Bo, S. Ma, J. Zhang, L. Qian, and G-H. Hu, Mater. Des., 88, 245 (2015).

    Article  CAS  Google Scholar 

  18. Y. Kong, J. N. Hay, Polym., 43, 1805 (2002).

    Article  CAS  Google Scholar 

  19. P. Marchese, A. Celli, M. Fiorini, Macromol. Chem. Phys., 203, 695 (2002).

    Article  CAS  Google Scholar 

  20. J. Jiang, S. Wang, J. Hou, K. Zhang, X. Wang, Q. Li, and G. Liu, Mater. Des., 141, 132 (2018).

    Article  CAS  Google Scholar 

  21. Q. Wang, J. Wang, C. Yang, K. Du, W. Zhu, and X. Zhang, Adv. Polym. Technol., 6, 1 (2019).

    Article  Google Scholar 

  22. N. T. Dintcheva, R. Arrigo, M. Morreale, F. La Mantia, R. Matassa, and E. Caponetti, Polym. Adv. Technol., 22, 1612 (2011).

    Article  CAS  Google Scholar 

  23. T. Sochi, Rheol. Acta, 54, 745 (2015).

    Article  CAS  Google Scholar 

  24. V. Speranza, U. Vietri, and R. Pantani, Macromol. Res., 19, 542 (2011).

    Article  CAS  Google Scholar 

  25. S. Mbarek, M. Jaziri, and C. Carrot, Polym. Eng. Sci., 46, 1378 (2006).

    Article  CAS  Google Scholar 

  26. L. C. Mendes, P. S. Pereira, and V. D. Ramos, Macromol. Symp., 299/300, 183 (2011).

    Article  CAS  Google Scholar 

  27. T. Zhao, J. Ai, P. Wang, W. Tong, C. Ding, Y. Cen, and M. Zhang, Adv. Ind. Eng. Polym. Res., 2, 203 (2019).

    Google Scholar 

  28. A. Al-Jabareen, S. Illescas, M. L. Maspoch, and O. Santana, J. Mater. Sci., 45, 6623 (2010).

    Article  CAS  Google Scholar 

  29. H. W. Jun, S. H. Chae, S. S. Park, H. S. Myung, and S. S. Im, Polym., 40, 1473 (1995).

    Article  Google Scholar 

  30. G. Y. Zhang, J. W. Ma, B. X. Cui, X. L. Luo, and D. Z. Ma, Macromol. Chem. Phys., 202, 604 (2001).

    Article  CAS  Google Scholar 

  31. D. Ma, G. Zhang, Y. He, J. Ma, and X. Luo, J. Polym. Sci. Pt. B-Polym. Phys., 37, 2960 (1999).

    Article  CAS  Google Scholar 

  32. M. Huneault, Z. Shi, and L. Utracki, Polym. Eng. Sci., 35, 115 (1995).

    Article  CAS  Google Scholar 

  33. H. Wang and R. Xiao, Polym. Adv. Technol., 23, 508 (2012).

    Article  CAS  Google Scholar 

  34. W. Wu, C. Wan, S. Wang, and Y. Zhang, Polym. Bull., 71, 1505 (2014).

    Article  CAS  Google Scholar 

  35. D. Sun, W. Wang, K. Dong, M. Jiang, D. Zhou, and L. Li, J. Appl. Polym. Sci., 137, 48270 (2020).

    Article  CAS  Google Scholar 

  36. M. Li, Q. Yang, M. Kong, Y. Huang, X. Liao, Y. Niu, and Z. Zhao, Polym. Adv. Technol., 29, 171 (2018).

    Article  CAS  Google Scholar 

  37. J. Ren, J. Jiang, Z. Li, J. Hou, and Q. Li, Macromol. Res., 28, 939 (2020).

    Article  CAS  Google Scholar 

  38. L. Piccolo, K. Puleo, M. Sorgato, G. Lucchetta, and D. Masato, Mater. Des., 198, 109272 (2021).

    Article  CAS  Google Scholar 

  39. B. Xu, M. Wang, T. Yu, and D. Zhao, J. Mech. Eng., 46, 125 (2010).

    Article  Google Scholar 

  40. M. Wang, H. Tian, and D. Zhao, J. Mech. Eng., 48, 21 (2012).

    Article  Google Scholar 

  41. J. Lu, Y. Qiang, W. Wu, and B. Jiang, Polym. Test., 89, 106635 (2020).

    Article  CAS  Google Scholar 

  42. S. Gao, Z. Qiu, J. Ouyang, and Y. Yang, Polym. Eng. Sci., 59, E7 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the financial support received from the technological research project of Henan Province (No.202102210028), and the National Science Fund (No. U1909219 and 11372286). The technical support from the Wisconsin Institute for Discovery by hosting the visit of the corresponding author is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Jiang.

Additional information

Supporting information

Information are available regarding the coefficients in Power-Law model for PC/PET blends (Table S1), the schematic of mesh size (Figure S2), and coefficients in presented micro-scale viscosity model (Table S2). The materials are available via the Internet at www.springer.com/13233.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, B., Jiang, J., Cao, Y. et al. Effect of Scale-Dependent Viscosity and Transesterification on Filling Behavior of Polycarbonate/Poly(ethylene terephthalate) Blends in Micro-Injection Molding. Macromol. Res. 30, 163–171 (2022). https://doi.org/10.1007/s13233-022-0023-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-022-0023-y

Keywords

Navigation