Skip to main content
Log in

Investigation into the Gelation of Polyacrylonitrile Solution Induced by Dry-jet in Spinning Process and Its Effects on Diffusional Process in Coagulation and Structural Properties of Carbon Fibers

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The jet effect in dry-jet wet spinning of a polyacrylonitrile (PAN) solution was investigated. The two parameters, jet-stretch ratio and air gap length, of the jet were controlled to elucidate each effect on PAN precursors and resulting carbon fibers. Excessively high jet-stretch ratio (>4) or air-gap (>1 cm) resulted in the development of the internal pore structure in PAN precursors. The pores remained even after the densification by thermal treatment acting as defects for poor tensile properties of carbon fibers (CFs). It was revealed that two parameters critically controlled the bidirectional diffusion of both solvent and non-solvent by determining the degree of the surface gelation at the jet. Excessively high jet-stretch ratio or high air-gap length created a thick solid skin on extruded dope limiting solvent/non-solvent diffusion. As a method to limit the development of the pores under the condition of high jet stretch ratio (>4), raising the dope temperature for limiting the degree of gelation at the jet was attempted and successfully manufactured mechanically improved fiber with a dense structure without pores under high jet-stretch condition. The study suggests that the high quality PAN precursors for high performance CFs can be manufactured under high jet-stretch ratio condition with proper management on gelation at the jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Zhang, X. Li, X. Ge, F. Deng, and U. R. Cho, Macromol. Res., 23, 952 (2015).

    Article  CAS  Google Scholar 

  2. Y. Zhang and S.-J. Park, J. Polym. Sci., Part B: Polym. Phys., 55, 1890 (2017).

    Article  CAS  Google Scholar 

  3. A. Gupta, D. Paliwal, and P. Bajaj, J. Macromol. Sci., Part C: Polym. Rev., 31, 1 (1991).

    Google Scholar 

  4. S. Kumar, D. Anderson, and A. Crasto, J. Mater. Sci., 28, 423 (1993).

    Article  CAS  Google Scholar 

  5. P. Baja, T. Sreekumar, and K. Sen, J. Appl. Polym. Sci., 86, 773 (2002).

    Article  CAS  Google Scholar 

  6. L. Tan, A. Wan, and D. Pan, Mater. Lett., 65, 887 (2011).

    Article  CAS  Google Scholar 

  7. Y. Arai, Nippon Steel Technical Report, 59, 65 (1993).

    Google Scholar 

  8. H. C. Liu, A. T. Chien, B. A. Newcomb, Y. Liu, S. Kumar, ACS Sustain. Chem. Eng., 3, 1943 (2015).

    Article  CAS  Google Scholar 

  9. E. Frank, L. M. Steudle, D. Ingildeev, J. M. Spörl, M. R. Buchmeiser, Ang. Chem. Int. Ed., 53, 5262 (2014).

    Article  CAS  Google Scholar 

  10. X. Zeng, J. Hu, J. Zhao, Y. Zhang, and D. Pan, J. Appl. Polym. Sci., 106, 2267 (2007).

    Article  CAS  Google Scholar 

  11. C. Hou, R. J. Qu, Y. Liang, and C. G. Wang, J. Appl. Polym. Sci., 96, 1529 (2005).

    Article  CAS  Google Scholar 

  12. Q. Baojun, P. Ding, and W. Zhenqiou, Adv. Polym. Technol., 6, 509 (1986).

    Article  Google Scholar 

  13. C. Wilms, G. Seide, and T. Gries, Chem. Eng. Transactions, 32, 1609 (2013).

    Google Scholar 

  14. X. Zeng, J. Chen, J. Zhao, C. Wu, D. Pan, and N. Pan, J. Appl. Polym. Sci., 114, 3621 (2009).

    Article  CAS  Google Scholar 

  15. A. Ziabicki, Fundamentals of Fibre Formation: The Science of Fibre Spinning and Drawing, John Wiley & Sons, Ltd., Chichester, 1976.

    Google Scholar 

  16. J. S. Tsai, J. Mater. Sci. Lett., 11, 140 (1992).

    Article  CAS  Google Scholar 

  17. C. Lai, G. Zhong, Z. Yue, G. Chen, L. Zhang, A. Vakili, Y. Wang, L. Zhu, J. Liu, and H. Fong, Polymer, 2, 19 (2011).

    Google Scholar 

  18. H. Pan, L. Li, L. Hu, and X. Cui, Polymer, 47, 4901 (2006).

    Article  CAS  Google Scholar 

  19. S. Z. Cheng, Z. Wu, and E. A. Mark, Polymer, 32, 1803 (1991).

    Article  CAS  Google Scholar 

  20. M. Yu, C. Wang, Y. Bai, Y. Wan, and Y. Xu, Polym. Bull., 57, 757 (2006).

    Article  CAS  Google Scholar 

  21. A. Gupta and I. R. Harrison, Carbon, 34, 1427 (1996).

    Article  CAS  Google Scholar 

  22. J. S. Tsai and C. H. Lin, J. Appl. Polym. Sci., 43, 679 (1991).

    Article  CAS  Google Scholar 

  23. Z. Xu, L. Liu, Y. Huang, Y. Sun, X. Wu, and J. Li, Mater. Lett., 63, 1814 (2009).

    Article  CAS  Google Scholar 

  24. M. A. Kim, D. Jang, S. Tejima, R. Cruz-Silva, H. I. Joh, H. C. Kim, S. Lee, and M. Endo, Sci. Rep., 6, 22988 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. E. Fitzer, J. L. Figueiredo, C. A. Bernardo, R. T. K. Baker, and K. J. Hüttinger, Eds., Carbon Fibers Filaments and Composites, Springer Netherlands, Dordrecht, 1990.

    Google Scholar 

  26. E. Frank, F. Hermanutz, and M. R. Buchmeiser, Macromol. Mater. Eng., 297, 493 (2012).

    Article  CAS  Google Scholar 

  27. X. Huang, Materials, 2, 2369 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  28. E. A. Morris, M. C. Weisenberger, S. B. Bradley, M. G. Abdallah, S. J. Mecham, P. Pisipati, and J. E. McGrath, Polymer, 55, 6471 (2014).

    Article  CAS  Google Scholar 

  29. E. A. Morris, M. C. Weisenberger, M. G. Abdallah, F. Vautard, H. Grappe, S. Ozcan, F. L. Paulauskas, C. Eberle, D. Jackson, S. J. Mecham, and A. K. Naskar, Carbon, 101, 245 (2016).

    Article  CAS  Google Scholar 

  30. X. Hou, X. Yang, L. Zhang, E. Waclawik, and S. Wu, Mater. Des., 31, 1726 (2010).

    Article  CAS  Google Scholar 

  31. T. F. Meyabadi, F. Dadashian, G. M. M. Sadeghi, and H. E. Z. Asl, Powder Technol., 261, 232 (2014).

    Article  CAS  Google Scholar 

  32. A. Boukhachem, C. Bouzidi, R. Boughalmi, R. Ouerteni, M. Kahlaoui, B. Ouni, H. Elhouichet, and M. Amlouk, Ceram. Int., 40, 13427 (2014).

    Article  CAS  Google Scholar 

  33. T. Yano, Y. Higaki, D. Tao, D. Murakami, M. Kobayashi, N. Ohta, J. I. Koike, M. Horigome, H. Masunaga, H. Ogawa, Y. Ikemoto, T. Moriwaki, and A. Takahara, Polymer, 53, 4702 (2012).

    Article  CAS  Google Scholar 

  34. S. Gu, J. Ren, and Q. Wu, Synth. Met., 155, 157 (2005).

    Article  CAS  Google Scholar 

  35. J. Crank, The Mathematics of Diffusion, Oxford University Press, London, 1979.

    Google Scholar 

  36. C. Hou, R. Qu, C. Wang, and L. Ying, J. Appl. Polym. Sci., 101, 3616 (2006).

    Article  CAS  Google Scholar 

  37. C. Hou, R. J. Qu, Y. Liang, and C. G. Wang, J. Appl. Polym. Sci., 96, 1529 (2005).

    Article  CAS  Google Scholar 

  38. M. MInus and S. Kumar, JOM, 57, 52 (2005).

    Article  CAS  Google Scholar 

  39. Z. Wangxi, L, Jie, and W. Gang, Carbon, 41, 2805 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Mu Jo.

Additional information

Acknowledgments: The authors acknowledge the financial support of this work from the Korea Institute of Science and Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, KA., Park, S., Nguyen, H.T.B. et al. Investigation into the Gelation of Polyacrylonitrile Solution Induced by Dry-jet in Spinning Process and Its Effects on Diffusional Process in Coagulation and Structural Properties of Carbon Fibers. Macromol. Res. 26, 544–551 (2018). https://doi.org/10.1007/s13233-018-6070-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-018-6070-8

Keywords

Navigation