Skip to main content
Log in

The processing, properties, and structure of carbon fibers

  • Overview
  • High-Performance Fibers
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This paper reviews the processing, properties, and structure of carbon fibers. Carbon fibers are derived from several precursors, with polyacrylonitrile being the predominant precursor used today. Carbon fibers have high strength (3–7 GPa), high modulus (200–500 GPa), compressive strength (1–3 GPa), shear modulus (10–15 GPa), and low density (1.75–2.00 g/cm3). Carbon fibers made from pitch can have modulus, thermal, and electrical conductivities as high as 900 GPa, 1,000 W/mK, and 106 S/m, respectively. These fibers have become a dominant material in the aerospace industry and their use in the automotive and other industries is growing as their cost continues to come down.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Fitzer, Carbon Fibers Filaments and Composites, ed. J.L. Figueiredo et al. (Dordrecht: Kluwer Academic, 1990), pp. 3–4.

    Google Scholar 

  2. D.D.L. Chung, Carbon Fiber Composites (Boston: Butterworth-Heineman, 1994), pp. 3–11.

    Google Scholar 

  3. W. Watt, Handbook of Composites — Volume 1, ed. A. Kelley, and Yu.N. Rabotnov (Holland: Elsevier Science Publishers B.V., 1985), pp. 327–387.

    Google Scholar 

  4. J.B. Donnet and R.C. Bansal, Carbon Fibers, 2nd ed., (New York: Marcel Dekker, 1990).

    Google Scholar 

  5. T.A. Edison, U.S. Patent 223,398 (1880)

  6. W. Watt, et al., The Engineer (London), 221 (1961), p. 815.

    Google Scholar 

  7. A. Shindo, Studies on Graphite Fiber, J. Ceram. Assoc. Japan, 69 (1961), p. C195.

    Google Scholar 

  8. R. Bacon and M.M. Tang, Carbon, 2 (1964), p. 211.

    Article  Google Scholar 

  9. L. Schutzenberger, C.R.Acad. Sci. (Paris), 111 (1890), pp. 774–778.

    Google Scholar 

  10. O.P. Bahl, et al., Carbon Fibers, ed. J.B. Donnet et al. (New York, Marcel Dekker, 1998), pp. 1–84.

    Google Scholar 

  11. W. Watt and W. Johnson, British Patent 1,110,791 (1965).

  12. R. Bacon and T.N. Hoses, High Performance Polymers, Their Origin and Development, ed. R.B. Sanymour and G.S. Kirshambaum (New York: Elsemer, 1986), p. 342.

    Google Scholar 

  13. V.B. Gupta and V.K. Kothari, eds., Manufactured Fibre Technology (London: Chapman & Hall, 1997).

    Google Scholar 

  14. Leighton H. Peebles, Carbon Fiber — Formation, Structure, and Properties (Boca Raton, LA: CRC Press, 1995).

    Google Scholar 

  15. A. Takaku and J. Shimizu, J. Appl, Polym. Sci., 29 (1984), p. 1319.

    Article  CAS  Google Scholar 

  16. A.K. Fiedler, E. Fitzer, and F. Rozploch, 11th Biennial Conf. on Carbon, 261 (1973).

  17. J.B. Donnet and O.P. Bahl, Encyclopedia of Physical Science and Technology, 2 (1987), p. 517.

    Google Scholar 

  18. T. Matsumoto, Pure Appl. Chem., 57 (1988), p. 1553.

    Google Scholar 

  19. Satish Kumar, Indian Journal of Fibre & Textile Research, 16 (1991), pp. 52–64.

    Google Scholar 

  20. J.D. Brooks and G.H. Taylor, Chemistry and Physics of Carbon, (New York: Marcel Dekker, 1968), pp. 243–268.

    Google Scholar 

  21. Mustafa Z. Özel and Keith D. Bartle, Turk J. Chem., 26 (2002), pp. 417–424.

    Google Scholar 

  22. M.S. Dresselhaus et al., Graphite Fibers and Filaments, (Berlin, Germany: Springer-Verlag, 1988).

    Google Scholar 

  23. J.E. Zimmer and J.L. White, Adv. in Liq Crysts., 5 (1982), p. 157.

    CAS  Google Scholar 

  24. M. Inagaki et al., Tanso, 147 (1991), p. 57.

    CAS  Google Scholar 

  25. M. Endo, CHEMTECT, 568 (1988).

  26. J. Gibson, et al., Nature, 154 (1944), p. 544.

    CAS  Google Scholar 

  27. T. Koyama, Carbon, 10 (1972), p. 757.

    Article  CAS  Google Scholar 

  28. Anon., Chemical Engineering, October (1957), pp. 172–174.

  29. G.G. Tibbetts and M.G. Devour, U.S. Patent 4,565,684 (1986).

    Google Scholar 

  30. M. Endo, T. Koyama, and Y. Hishiyama, Jpn. J. Apl. Phys., 15 (1976), p. 2073.

    Article  CAS  Google Scholar 

  31. H. Katsuki, et al., Carbon, 19 (1981), p. 148.

    Article  CAS  Google Scholar 

  32. R.T.K. Baker ET AL., J. J. Warte, 26 (1972), p. 51.

    CAS  Google Scholar 

  33. T. Baired, J.R. Fryer, and B. Grant. Carbon, 12 (1974), p. 591.

    Article  Google Scholar 

  34. A. Oberlin, M. Endo, and T. Koyama, Carbon, 14 (1976), p. 133.

    Article  CAS  Google Scholar 

  35. M. Endo, et al., Carbon, 39 (2001), p. 1287.

    Article  CAS  Google Scholar 

  36. Applied Sciences Inc. (www.apsci.com/home.html).

  37. Showa Denko (www.sdkc.com/fine_carbon.asp).

  38. Sumio Iijima, Nature, 354 (1991), p. 56.

    Article  CAS  Google Scholar 

  39. M.M. Treacy, T.W. Ebbesen, and J.M. Gibson, Nature, 381 (1996), p. 678.

    Article  CAS  Google Scholar 

  40. R.E. Smalley, et al., Science, 273 (1996), p. 483.

    Article  Google Scholar 

  41. M.S. Dresselhaus and P.C. Eklund, Advances in Physics, 49 (6) (2000), p. 705.

    Article  CAS  Google Scholar 

  42. M.S. Dresselhaus et al., Carbon, 33 (7) (1995), p. 883.

    Article  CAS  Google Scholar 

  43. Sumio Iijima and T. Ichihashi, Nature, 363 (1993) p. 603.

    Article  CAS  Google Scholar 

  44. P. Nikolaev et al., Chem. Phys. Lett., 313 (1999), pp. 91–97.

    Article  CAS  Google Scholar 

  45. G. Gao, et al., Nanotechnology, 9 (1998), p. 184.

    Article  CAS  Google Scholar 

  46. D.A. Walters, et al., Appl. Phys. Lett., 74 (1999), p. 3803.

    Article  CAS  Google Scholar 

  47. Savas Berber, Young-Kyun Kwon, and David Tomanek, Phys. Rev. Lett., 84 (2000).

  48. P. Kim et al., Phys. Rev. Lett., 87 (2001) p. 215502.

    Article  CAS  Google Scholar 

  49. W.P. Hoffman, W.C. Hurley, and P.M. Liu, J. Mater. Res., 6 (1991), p. 1685.

    CAS  Google Scholar 

  50. D.J. Johnson, Nature 279 (1979), p. 142.

    Article  CAS  Google Scholar 

  51. S.C. Bennett and D.J. Johnson, Proceed. 5th Industrial Carbon and Graphite Conf., 1 (1978), p. 377.

    CAS  Google Scholar 

  52. S. Kumar, D.P. Anderson, and A.S. Crasto, J. Mater. Sci., 28 (1993), p. 423.

    Article  CAS  Google Scholar 

  53. H. Peterlik, P. Fratzl, and K. Kromp, Carbon, 32 (1994), p. 939.

    Article  CAS  Google Scholar 

  54. ASTM Standard D 3379-75 (1989).

  55. ASTM D 4018-4081.

  56. C.T. Li and J.V.V. Tietz, J. Mater. Sci., 25 (1990), p. 4694.

    Article  Google Scholar 

  57. O.L. Blakslee et al., J. Appl. Phys., 41 (1970), p. 3373.

    Article  CAS  Google Scholar 

  58. M.G. Dobb, D.J. Johnson, and C.R. Park, J. Mater. Sci., 25 (1990), p. 829.

    Article  CAS  Google Scholar 

  59. V.V. Kozey et al., J. Mater. Res., 10 (1995), p. 1044.

    CAS  Google Scholar 

  60. Jean-Pierre Issi and B. Nysten, Carbon Fibers, ed. J.B. Donnet et al. (New York: Marcel Dekker, 1998), pp. 371–461.

    Google Scholar 

  61. Zoltek Inc. (www.zoltek.com).

  62. Cytec Industries (www.cytec.com).

  63. Toray Global (www.toray.com).

  64. Hexcel Fibers (www.hexcelifibers.com).

  65. Grafil, Inc. (www.grafil.com).

  66. SGL Carbon Group (www.sglcarbon.com).

  67. T.K. Wang et al., Carbon Fibers, ed. J.B. Donnet et al. (New York: Marcel Dekker, 1998), pp. 231–309.

    Google Scholar 

  68. Fred Hajduk, Carbon Fiber Overview presented to National Academy of Sciences (2003).

  69. Boeing (www.boeing.com).

  70. T.V. Sreekumar et al., Advanced Materials, 16 (2004), pp. 58–61.

    Article  CAS  Google Scholar 

  71. B.G. Min et al., Carbon, 43 (2005), p. 599.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact Satish Kumar, Georgia Institute of Technology, School of Polymer, Textile and Fiber Engineering, 801 Ferst Drive, NW MRDC-1, Atlanta, Georgia 30332-0295; (404) 894-7550; fax (404) 894-8780; e-mail satish.kumar@ptfe.gatech.edu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MInus, M., Kumar, S. The processing, properties, and structure of carbon fibers. JOM 57, 52–58 (2005). https://doi.org/10.1007/s11837-005-0217-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-005-0217-8

Keywords

Navigation