Skip to main content
Log in

Acoustofluidic Microbioreactor Using Surface Acoustic Wave-induced Acoustic Streaming Flow

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Microbioreactors have been widely utilized as an alternative to conventional benchtop reactors, since the miniaturized platforms offer advantages including reduced sample volume and homogeneous microenvironments. Here, we proposed an acoustofluidic microbioreactor based on surface acoustic wave (SAW)-induced acoustic streaming flow (ASF). The SAW-induced ASF, which originates from the wave attenuation in a fluid, allows rapid mixing and heat transfer for enhanced mass and heat transfer within the sample fluid. We conducted thorough numerical and experimental investigations on the acousto-hydrodynamics and heat transfer phenomena to find an optimal frequency in the prescribed cylindrical microwell. We found that the homogenous chemical concentration and temperature distributions within the fluid were rapidly achieved by the SAW-induced ASF in the proposed device. For proof-of-concept demonstration of practical applicability, we cultured Escherichia coli as a model cell using the proposed acoustofluidic microbioreactor. From comparative evaluation with conventional platforms including a shaker incubator and a microplate shaker, we confirmed that the bacteria growth rate was enhanced in the proposed acoustofluidic microbioreactor due to the high homogeneity in the chemical concentration and temperature by the acoustic agitation, without any moving mechanical components. We expect that the proposed ASF-based microbioreactor can be broadly utilized for various biological applications that require homogeneous mixing and temperature gradient within a reaction medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Song, Y., et al.: Microfluidic synthesis of nanomaterials. Small 4, 698–711 (2008)

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, X., et al.: Application of microreactor technology in process development. Org. Process Res. Dev. 8, 455–460 (2004)

    Article  CAS  Google Scholar 

  3. Kim, S., et al.: Acoustofluidic stimulation of functional immune cells in a microreactor. Adv. Sci. 9, 2105809 (2022)

    Article  CAS  Google Scholar 

  4. Meyvantsson, I., et al.: Cell culture models in microfluidic systems. Annu. Rev. Anal. Chem. 1, 423–449 (2008)

    Article  CAS  Google Scholar 

  5. Mason, B.P., et al.: Greener approaches to organic synthesis using microreactor technology. Chem. Rev. 107, 2300–2318 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. Schäpper, D., et al.: Application of microbioreactors in fermentation process development: a review. Anal. Bioanal. Chem. 395, 679–695 (2009)

    Article  PubMed  Google Scholar 

  7. Liu, Y., et al.: Why microfluidics? Merits and trends in chemical synthesis. Lab Chip 17, 3960–3978 (2017)

    Article  CAS  PubMed  Google Scholar 

  8. Halldorsson, S., et al.: Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron. 63, 218–231 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. Sebastian Cabeza, V., et al.: Size-controlled flow synthesis of gold nanoparticles using a segmented flow microfluidic platform. Langmuir 28, 7007–7013 (2012)

    Article  CAS  Google Scholar 

  10. Kwizera, E.A., et al.: Greatly enhanced CTC culture enabled by capturing CTC heterogeneity using a PEGylated PDMS–Titanium–Gold electromicrofluidic device with glutathione-controlled gentle cell release. ACS Nano 16, 11374–11391 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, Z., et al.: Microchemostat—microbial continuous culture in a polymer-based, instrumented microbioreactor. Lab Chip 6, 906–913 (2006)

    Article  CAS  PubMed  Google Scholar 

  12. Pasirayi, G., et al.: Microfluidic bioreactors for cell culturing: a review. Micro Nanosyst. 3, 137–160 (2011)

    Article  CAS  Google Scholar 

  13. Kim, R.: Advanced organotypic in vitro model systems for host-microbial coculture. BioChip J. (2023). https://doi.org/10.1007/s13206-023-00103-5

    Article  PubMed  PubMed Central  Google Scholar 

  14. Figallo, E., et al.: Micro-bioreactor array for controlling cellular microenvironments. Lab Chip 7, 710–719 (2007)

    Article  CAS  PubMed  Google Scholar 

  15. Lee, Y., et al.: Microfabricated cell culture system for the live cell observation of the multilayered proliferation of undifferentiated HT-29 cells. BioChip J. 11, 308–315 (2017)

    Article  CAS  Google Scholar 

  16. Lee, K.W., et al.: Immunogenicity monitoring cell chip incorporating finger-actuated microfluidic and colorimetric paper-based analytical functions. BioChip J. (2023). https://doi.org/10.1007/s13206-023-00111-5

    Article  PubMed  PubMed Central  Google Scholar 

  17. Marimuthu, M., et al.: Continuous oxygen supply in pump-less micro-bioreactor based on microfluidics. BioChip J. 9, 1–9 (2015)

    Article  CAS  Google Scholar 

  18. Grünberger, A., et al.: A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level. Lab Chip 12, 2060–2068 (2012)

    Article  PubMed  Google Scholar 

  19. Connacher, W., et al.: Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications. Lab Chip 18, 1952–1996 (2018)

    Article  CAS  PubMed  Google Scholar 

  20. Huang, G., et al.: Combining ultrasound-mediated intracellular delivery with microfluidics in various applications. BioChip J. (2023). https://doi.org/10.1007/s13206-023-00128-w

    Article  Google Scholar 

  21. Cha, B., et al.: Rapid acoustofluidic mixing by ultrasonic surface acoustic wave-induced acoustic streaming flow. Ultrason. Sonochem. 99, 106575 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wiklund, M.: Acoustofluidics 12: biocompatibility and cell viability in microfluidic acoustic resonators. Lab Chip 12, 2018–2028 (2012)

    Article  CAS  PubMed  Google Scholar 

  23. Greco, G., et al.: Surface-acoustic-wave (SAW)-driven device for dynamic cell cultures. Anal. Chem. 90, 7450–7457 (2018)

    Article  CAS  PubMed  Google Scholar 

  24. Im, Y., et al.: Antibiotic susceptibility test under a linear concentration gradient using travelling surface acoustic waves. Lab Chip 21, 3449–3457 (2021)

    Article  CAS  PubMed  Google Scholar 

  25. Kim, W., et al.: Acoustofluidic control of chemical concentration within picoliter droplets in a disposable microfluidic chip. Sens. Actuators B Chem. 393, 134132 (2023)

    Article  CAS  Google Scholar 

  26. Stringer, M., et al.: Methodologies, technologies, and strategies for acoustic streaming-based acoustofluidics. Appl. Phys. Rev. 10, 011315 (2023)

    Article  CAS  Google Scholar 

  27. Laurell, T., Lenshof, A.: Microscale acoustofluidics. Royal Society of Chemistry, London (2014)

    Book  Google Scholar 

  28. Rasouli, R., et al.: Acoustofluidics–changing paradigm in tissue engineering, therapeutics development, and biosensing. Lab Chip 23, 1300–1338 (2023)

    Article  CAS  PubMed  Google Scholar 

  29. Markham, J.J., et al.: Absorption of sound in fluids. Rev. Mod. Phys. 23, 353 (1951)

    Article  CAS  Google Scholar 

  30. Collins, D.J., et al.: Highly localized acoustic streaming and size-selective submicrometer particle concentration using high frequency microscale focused acoustic fields. Anal. Chem. 88, 5513–5522 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. Dentry, M.B., et al.: Frequency effects on the scale and behavior of acoustic streaming. Phys. Rev. 89, 013203 (2014)

    Google Scholar 

  32. Park, J., et al.: Acoustofluidic generation of droplets with tunable chemical concentrations. Lab Chip 20, 3922–3929 (2020)

    Article  CAS  PubMed  Google Scholar 

  33. Song, S., et al.: Design of interdigitated transducers for acoustofluidic applications. Nanotechnol. Precis. Eng. (2022). https://doi.org/10.1063/10.0013405

    Article  Google Scholar 

  34. Naas, T.T., et al.: High performance in terms of thermal mixing of non-Newtonian fluids using open chaotic flow: numerical investigations. Therm. Sci. Eng. Prog. 16, 100454 (2020)

    Article  Google Scholar 

  35. Moffatt, H.K.: The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117–129 (1969)

    Article  Google Scholar 

  36. Park, J., et al.: Acoustothermal tweezer for droplet sorting in a disposable microfluidic chip. Lab Chip 17, 1031–1040 (2017)

    Article  CAS  PubMed  Google Scholar 

  37. Park, J., et al.: Spatiotemporally controllable acoustothermal heating and its application to disposable thermochromic displays. RSC Adv. 6, 33937–33944 (2016)

    Article  CAS  Google Scholar 

  38. Shilton, R.J., et al.: Rapid and controllable digital microfluidic heating by surface acoustic waves. Adv. Funct. Mater. 25, 5895–5901 (2015)

    Article  CAS  Google Scholar 

  39. Alvarez, M.M., et al.: Laminar mixing in eccentric stirred tank systems. Can. J. Chem. Eng. 80, 546–557 (2002)

    Article  CAS  Google Scholar 

  40. Ratkowsky, D.A., et al.: Relationship between temperature and growth rate of bacterial cultures. J. Bacteriol. 149, 1–5 (1982)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Van Alst, A.J. (2016) Growth curves: generating growth curves using colony forming units and optical density measurements. MyJoVE corporation. https://www.jove.com/v/10511/growth-curves-generating-growth-curves-usingcolony-forming-units. Accessed 11 Jan 2024

  42. Au, S.H., et al.: Integrated microbioreactor for culture and analysis of bacteria, algae and yeast. Biomed. Microdevices 13, 41–50 (2011)

    Article  CAS  PubMed  Google Scholar 

  43. Piella, J., et al.: Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem. Mater. 28, 1066–1075 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2023-00210891). The microfluidic devices were fabricated by using a mask aligner (MDA-400S, MIDAS) at Energy Convergence Core Facility in Chonnam National University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Yoon or Jinsoo Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3299 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, B., Lee, S., Park, G. et al. Acoustofluidic Microbioreactor Using Surface Acoustic Wave-induced Acoustic Streaming Flow. BioChip J (2024). https://doi.org/10.1007/s13206-024-00148-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13206-024-00148-0

Keywords

Navigation