Skip to main content

Acoustic Cell Manipulation

  • Chapter
  • First Online:
Microtechnology for Cell Manipulation and Sorting

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

This chapter reviews recent developments in the field of acoustic manipulation and processing of cells in microfluidic systems and gives an overview of different acoustofluidic operating modalities. Continuous flow-based acoustophoresis and acoustic trapping are key areas of interest. In view of the topic of this publication we have limited this chapter to mainly cover acoustofluidic work that concerns cell handling and cell-based studies. A focus is therefore maintained on developments that demonstrate how microscale acoustofluidic systems can be designed to solve unmet needs in the everyday work of life science laboratories related to cell biology or clinically relevant research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antfolk M, Antfolk C, Lilja H et al (2015a) A single inlet two-stage acoustophoresis chip enabling tumor cell enrichment from white blood cells. Lab Chip 15:2102–2109

    Article  Google Scholar 

  • Antfolk M, Magnusson C, Augustsson P et al (2015b) Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells. Anal Chem 87:9322–9328

    Article  Google Scholar 

  • Augustsson P, Persson J, Ekström S et al (2009a) Decomplexing biofluids using microchip based acoustophoresis. Lab Chip 9:810–818

    Article  Google Scholar 

  • Augustsson P, Åberg LB, Swärd-Nilsson A-M et al (2009b) Buffer medium exchange in continuous cell and particle streams using ultrasonic standing wave focusing. Michrochim Acta 164:269–277

    Article  Google Scholar 

  • Augustsson P, Magnusson C, Nordin M et al (2012a) Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis. Anal Chem 84:7954–7962

    Article  Google Scholar 

  • Augustsson P, Malm J, Ekström S (2012b) Acoustophoretic microfluidic chip for sequential elution of surface bound molecules from beads or cells. Biomicrofluidics 6:034115

    Article  Google Scholar 

  • Augustsson P, Karlsen JT, Su HW et al (2016a) Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping. Nat Commun 7:11556

    Article  Google Scholar 

  • Augustsson P, Magnusson C, Lilja H, Laurell T (2016b) Acoustophoresis in tumor cell enrichment. In: Fan HZH (ed) Circulating tumor cells: isolation and analysis. Wiley, London, pp 227–238. ISBN 9781118915530

    Google Scholar 

  • Austin Suthanthiraraj PP, Piyasena ME, Woods TA et al (2012) One-dimensional acoustic waves in rectangular channels flow cytometry. Methods 57:259–271

    Article  Google Scholar 

  • Barnkob R, Augustsson P, Laurell T, Bruus H (2012) Acoustic radiation- and streaming-induced microparticle velocities determined by micro-PIV in an ultrasound symmetry plane. Phys Rev E 86:056307 2012

    Article  Google Scholar 

  • Bazou D, Kuznetsova LA, Coakley WT (2005) Physical environment of 2-D animal cell aggregates formed in a short pathlength ultrasound standing wave trap. Ultrasound Med Biol 31(3):423–430 2005

    Article  Google Scholar 

  • Bengtsson M, Laurell T (2004) Ultrasonic agitation in microchannels. Anal Bioanal Chem 378:1716–1721

    Article  Google Scholar 

  • Bjerknes VFK (1906) Fields of force. Columbia University, New York

    MATH  Google Scholar 

  • Bruus H (2012) Acoustofluidics 7: the acoustic radiation force on small particles. Lab Chip 12:1014–1021

    Article  Google Scholar 

  • Burguillos MA, Magnusson C, Nordin M et al (2013) Microchannel acoustophoresis does not impact survival or function of microglia, leukocytes or tumor cells. PLoS ONE 8:e64233

    Article  Google Scholar 

  • Carugo D, Ankrett DN, Glynne-Jones P et al (2011) Contrast agent-free sonoporation: the use of an ultrasonic standing wave microfluidic system for the delivery of pharmaceutical agents. Biomicrofluidics 5:044108

    Article  Google Scholar 

  • Chen Y, Li S, Gu Y et al (2014) Continuous enrichment of low-abundance cell samples using standing surface acoustic waves (SSAW). Lab Chip 14:924–930

    Article  Google Scholar 

  • Christakou AE, Ohlin M, Vanherberghen B et al (2013) Live cell imaging in a micro-array of acoustic traps facilitates quantification of natural killer cell heterogeneity. Integr Biol 5:712–719

    Article  Google Scholar 

  • Christakou AE, Ohlin M, Önfelt B et al (2015) Ultrasonic three-dimensional on-chip cell culture for dynamic studies of tumor immune surveillance by natural killer cells. Lab Chip 15:3222–3231

    Article  Google Scholar 

  • Coakley WT, Bardsley DW, Grundy MA et al (1989) Cell manipulation in ultrasonic standing wave fields. J Chem Technol Biotechnol 44:43–62

    Google Scholar 

  • Coakley WT, Bazou D, Morgan J et al (2004) Cell-cell contact and membrane spreading in an ultrasound trap. Colloids Surf B 34:221–230

    Article  Google Scholar 

  • Collins DJ, Alan T, Neild A (2014) The particle valve: on-demand particle trapping, filtering, and release from a microfabricated polydimethylsiloxane membrane using surface acoustic waves. Appl Phys Lett 105:033509

    Article  Google Scholar 

  • Collins DJ, Morahan B, Garcia-Bustos J et al (2015) Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat Commun 6:8686

    Article  Google Scholar 

  • Courtney CRP, Ong C-K, Drinkwater BW et al (2012) Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves. Proc R Soc A Math Phys Eng Sci 468(2138):337–360

    Article  Google Scholar 

  • Courtney CRP, Demore CEM, Wu H et al (2014) Independent trapping and manipulation of microparticles using dexterous acoustic tweezers. Appl Phys Lett 104:154103

    Article  Google Scholar 

  • Cousins CM, Holownia P, Hawkes JJ et al (2000) Plasma preparation from whole blood using ultrasound. Ultrasound Med Biol 26(5):881–888

    Article  Google Scholar 

  • Deshmukh S, Brzozka Z, Augustsson P et al (2014) Acoustic radiation forces at liquid interfaces impact the performance of acoustophoresis. Lab Chip 14:3394–3400

    Article  Google Scholar 

  • Ding X, Lin S-CS, Kiralya B et al (2012) On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. PNAS 109(28):11105–11109

    Article  Google Scholar 

  • Dykes J, Lenshof A, Åstrand-Grundström I-B et al (2011) Efficient removal of platelets from peripheral blood progenitor cell products using a novel micro-chip based acoustophoretic platform. PLoS ONE 6:e23074

    Article  Google Scholar 

  • Dyson M, Woodward B, Pond JB (1971) Flow of red blood cells stopped by ultrasound. Nature 232:572–573

    Google Scholar 

  • Evander M, Johansson L, Lilliehorn T et al (2007) Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays. Anal Chem 79(7):2984–2991

    Google Scholar 

  • Evander M, Gidlöf O, Olde B et al (2015) Non-contact acoustic capture of microparticles from small plasma volumes. Lab Chip 15:2588–2596

    Article  Google Scholar 

  • Franke T, Braunmüller S, Schmid L et al (2010) Surface acoustic wave actuated cellsorting (SAWACS). Lab Chip 10:789–794

    Article  Google Scholar 

  • Glynne-Jones P, Démoré CEM, Ye C et al (2012) Array-controlled ultrasonic manipulation of particles in planar acoustic resonator. IEEE Trans Ultrason Ferroelectr Freq Control 59(6):1258–1266

    Google Scholar 

  • Goddard G, Kaduchak G (2005) Ultrsonic particle concentration in a line-driven cylindrical tube. JASA 117(6):3440–3447

    Article  Google Scholar 

  • Goddard GR, Sanders CK, Martin JC et al (2007) Analytical performance of an ultrasonic flow cytometer. Anal Chem 79:8740–8746

    Article  Google Scholar 

  • Gorkov LP (1962) On the forces acting on a small particle in an acoustical field in a ideal fluid. Sov Phys Dokl 6(9):773–775

    Google Scholar 

  • Grenvall C, Augustsson P, Folkenberg JR, Laurell T (2009) Harmonic microchip acoustophoresis: A route to online raw milk sample precondition in protein and lipid content quality control. Anal Chem 81:6195–6200

    Google Scholar 

  • Grenvall C, Folkenberg JR, Augustsson P et al (2012) Label-free somatic cell cytometry in raw milk using acoustophoresis. Cytometry A 81A:1076–1083

    Article  Google Scholar 

  • Grenvall C, Antfolk C, Bisgaard CZ, Laurell T (2014) Two-dimensional acoustic particle focusing enables sheathless chip Coulter counter with planar electrode configuration. Lab Chip 14(24):4629–4637

    Article  Google Scholar 

  • Grenvall C, Magnusson C, Lilja H et al (2015) Concurrent isolation of lymphocytes and granulocytes using prefocused free flow acoustophoresis. Anal Chem 87:5596–5604

    Article  Google Scholar 

  • Gröschl M (1998) Ultrasonic separation of suspended particles—Part I: Fundamentals. Acustica 84:432–447

    Google Scholar 

  • Gröschl M, Burger W, Handl B et al (1998) Ultrasonic separation of suspended particles—Part III: Application in biotechnology. Acustica 84:815–822

    Google Scholar 

  • Guo F, Mao Z, Chen Y et al (2016) Three-dimensional manipulation of single cells using surface acoustic waves. PNAS 113(6):1522–1527

    Google Scholar 

  • Hammarström B, Evander M, Barbeau H et al (2010) Non-contact acoustic cell trapping in disposable glass capillaries. Lab Chip 2010(10):2251–2257

    Article  Google Scholar 

  • Hammarström B, Laurell T, Nilsson J (2012) Seed particle-enabled acoustic trapping of bacteria and nanoparticles in continuous flow systems. Lab Chip 12:4296–4304

    Article  Google Scholar 

  • Hammarström B, Evander M, Wahlström J et al (2014a) Frequency tracking in acoustic trapping for improved performance stability and system surveillance. Lab Chip 14:1005–1013

    Article  Google Scholar 

  • Hammarström B, Nilson B, Laurell T et al (2014b) Acoustic trapping for bacteria identification in positive blood cultures with MALDI-TOF MS. Anal Chem 86:10560–10567

    Article  Google Scholar 

  • Harris NR, Hill M, Beeby S et al (2003) A silicon microfluidic ultrasonic separator. Sens Act B 95:425–434

    Article  Google Scholar 

  • Hawkes JJ, Coakley WT (2001) Force field particle filter, combining ultrasound standing waves and laminar flow. Sens Act B 75:213–222

    Article  Google Scholar 

  • Hawkes JJ, Radel S (2013) Acoustofluidics 22: multi-wavelength resonators, applications and considerations. Lab Chip 13:610–627

    Article  Google Scholar 

  • Hawkes JJ, Barber RW, Emerson DR et al (2004) Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel. Lab Chip 4:446–452

    Article  Google Scholar 

  • Hertz G, Mende H (1939) The acoustic radiation pressure in liquids. Z Phys 114:354–367

    Article  Google Scholar 

  • Hwang JY, Kim J, Park JM et al (2016) Cell deformation by single-beam acoustic trapping: a promising tool for measurements of cell mechanics. Nat Sci Rep 6:27238. doi:10.1038/srep27238

    Article  Google Scholar 

  • Iranmanesh I, Ramachandraiah H, Russom A et al (2015) On-chip ultrasonic sample preparation for cell based assays. RSC Adv 5:74304–74311

    Article  Google Scholar 

  • Jakobsson O, Grenvall C, Nordin M et al (2014a) Acoustic actuated fluorescence activated sorting of microparticles. Lab Chip 14:1943–1950

    Article  Google Scholar 

  • Jakobsson O, Antfolk M, Laurell T (2014b) Continuous flow two-dimensional acoustic orientation of nonspherical cells. Anal Chem 86:6111–6114

    Article  Google Scholar 

  • Jakobsson O, Oh SS, Antfolk M et al (2015) Thousand-fold volumetric concentration of live cells with a recirculating acoustofluidic device. Anal Chem 87:8497–8502

    Article  Google Scholar 

  • Johansson L, Nikolajeff F, Johansson S et al (2009) On-chip fluorescence-activated cell sorting by an integrated miniaturized ultrasonic transducer. Anal Chem 81:5188–5196

    Article  Google Scholar 

  • Jönsson H, Holm C, Nilsson A et al (2004) Particle separation using ultrasound can radically reduce embolic load to brain after cardiac surgery. Ann Thorac Surg 78:1572–1578

    Article  Google Scholar 

  • Leão-Neto JP, Silva GT (2016) Acoustic radiation force and torque exerted on a small viscoelastic particle in an ideal fluid. Ultrasonics 71(2016):1–11

    Article  Google Scholar 

  • Lee C, Jeong JS, Hwang JY et al (2014) Non-contact multi-particle annular patterning and manipulation with ultrasound microbeam. Appl Phys Let 104:244107

    Article  Google Scholar 

  • Lei J, Glynne-Jones P, Hill M (2013) Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices. Lab Chip 13:2133–2143

    Article  Google Scholar 

  • Lei J, Glynne-Jones P, Hill (2016) Modal Rayleigh-like streaming in layered acoustofluidic devices. Phys Fluids 28:012004

    Article  Google Scholar 

  • Lenshof A, Tajudin AA, Järås K et al (2009) Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics. Anal Chem 81:6030–6037

    Article  Google Scholar 

  • Lenshof A, Warner B, Laurell T (2010) Acoustophoretic pretreatment of cell lysate prior to FACS analysis. In: Micro total analysis systems 2010, 3–7 Oct, Groningen, Netherlands, pp 1577–1579

    Google Scholar 

  • Lenshof A, Evander M, Laurell T et al (2012) Acoustofluidics 5: building microfluidic acoustic resonators. Lab Chip 12:684–695

    Article  Google Scholar 

  • Lenshof A, Jamal A, Dykes J et al (2014) Efficient purification of CD4+ lymphocytes from peripheral blood progenitor cell products using affinity bead acoustophoresis. Cytometry A 85A:933–941

    Article  Google Scholar 

  • Ley M, Bruus H (2016) Continuum modeling of hydrodynamic particle–particle interactions in microfluidic high concentration suspensions. Lab Chip 16:1178–1188

    Article  Google Scholar 

  • Li S, Glynne-Jones P, Andriotis OG et al (2014) Application of an acoustofluidic perfusion bioreactor for cartilage tissue engineering. Lab Chip 14:4475–4485

    Article  Google Scholar 

  • Li P, Mao Z, Peng Z et al (2015a) Acoustic separation of circulating tumor cells. PNAS 112:4970–4975

    Article  Google Scholar 

  • Li S, Ding X, Mao Z et al (2015b) Standing surface acoustic wave (SSAW)-based cell washing. Lab Chip 15:331–338

    Article  Google Scholar 

  • Manneberg O, Svennebring J, Hertz HM, Wiklund M (2008a) Wedge transducer design for two-dimensional ultrasonic manipulation in a microfluidic chip. J Micromech Microeng 18:095025

    Article  Google Scholar 

  • Manneberg O, Vanherberghen B, Svennebring J et al (2008b) A three-dimensional ultrasonic cage for characterization of individual cells. Appl Phys Lett 93:063901

    Article  Google Scholar 

  • Mao Z, Xie Y, Guo F et al (2016) Experimental and numerical studies on standing surface acoustic wave microfluidics. Lab Chip 16:515–524

    Article  Google Scholar 

  • Mishra P, Hill M, Glynne-Jones P (2014) Deformation of red blood cells using acoustic radiation forces. Biomicrofluidics 8:034109

    Article  Google Scholar 

  • Mitri FG (2014) Single Bessel tractor-beam tweezers. Wave Motion 51(2014):986–993

    Article  MathSciNet  Google Scholar 

  • Muller PB, Barnkob R, Herring Jensen MJ, Bruus H (2012) A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 12:4617–4627

    Article  Google Scholar 

  • Muller PB, Rossi M, Marín ÁG et al (2013) Ultrasound-induced acoustophoretic motion of microparticles in three dimensions. Phys Rev E 88(2):023006

    Google Scholar 

  • Nawaz AA, Chen Y, Nama N et al (2015) Acoustofluidic fluorescence activated cell sorter. Anal Chem 87:12051–12058

    Article  Google Scholar 

  • Ngamsom B, Lopez-Martinez MJ, Raymond J-C et al (2016) On-chip acoustophoretic isolation of microflora including S. typhimurium from raw chicken, beef and blood samples. J Microbiol Methods 123:79–86

    Article  Google Scholar 

  • Nilsson A, Petersson F, Persson H et al (2002) Autologous blood recovery and wash in microfluidic channel arrays utilizing ultrasonic standing waves. In: Micro total analysis systems 2002, pp 625–626, 3–7 Nov, Nara, Japan

    Google Scholar 

  • Nilsson A, Petersson F, Jönsson H et al (2004) Acoustic control of suspended particles in microfluidic chips. Lab Chip 4:131–135

    Article  Google Scholar 

  • Nordin M, Laurell T (2012) Two-hundredfold volume concentration of dilute cell and particle suspensions using chip integrated multistage acoustophoresis. Lab Chip 12:4610–4616

    Article  Google Scholar 

  • Ohlin M, Christakou AE, Frisk T et al (2013) Influence of acoustic streaming on ultrasonic particle manipulation in a 100-well ring-transducer microplate. Micromech Microeng 23:035008

    Article  Google Scholar 

  • Olsson P, Evander M, Petersson K et al (2016) Integrated acoustic separation, enrichment and microchip PCR detection of bacteria from blood for rapid sepsis diagnostics. Anal Chem. doi:10.1021/acs.analchem.6b00323

    Google Scholar 

  • Park J-W, Kim S, Ito T, Fujii T et al (2016a) Acoustofluidic harvesting of microalgae on a single chip. Biomicrofluidics 10:034119. doi:10.1063/1.4954744

    Article  Google Scholar 

  • Park J-W, Lee S, Shuo R, Kim S, Laurell T (2016b) Acousto-microfluidics for screening of ssDNA aptamer. Sci Rep 6:27121. doi:10.1038/srep27121

    Article  Google Scholar 

  • Persson J, Augustsson P, Laurell T, Ohlin M (2008) Acoustic microfluidic chip technology to facilitate automation of phage display selection of specific binders from protein library es. FEBS J 275:5657–5666

    Article  Google Scholar 

  • Peterson S, Perkins G, Baker C (1986) Development of an ultrasonic blood cell separator. In: Proceedings of 8th annual conference of the Engineering in Medicine and Biology Society, pp 154–156

    Google Scholar 

  • Petersson F, Nilsson A, Holm C et al (2004) Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels. Analyst 129:938–943

    Article  Google Scholar 

  • Petersson F, Nilsson A, Jönsson H et al (2005) Carrier medium exchange through ultrasonic particle switching in microfluidic channels. Anal Chem 77:1216–1221

    Article  Google Scholar 

  • Petersson F, Åberg L, Swärd-Nilsson A-M et al (2007) Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal Chem 79:5117–5123

    Article  Google Scholar 

  • Piyasena ME, Austin Suthanthiraraj PP, Appelgate Jr RW et al (2012) Multinode acoustic focusing for parallel flow cytometry. Anal Chem 84:1831–1839

    Google Scholar 

  • Prest JE, Treves Brown BJ, Fielden PR, Wilkinson SJ, Hawkes JJ (2015) Scaling-up ultrasound standing wave enhanced sedimentation filters. Ultrasonics 56:260–270

    Article  Google Scholar 

  • Sapozhnikov OA, Bailey MR (2013) Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid. J. Acoust Soc Am 133(2):661–676

    Google Scholar 

  • Shi J, Mao X, Ahmed D, Colletti A, Huang TJ (2008) Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab Chip 8:221–223

    Article  Google Scholar 

  • Shi J, Ahmed D, Xiaole MX et al (2009) Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves. Lab Chip 2009(9):2890–2895

    Article  Google Scholar 

  • Silva GT, Bruus H (2014) Acoustic interaction forces between small particles in an ideal fluid. Phys Rev E 90(063007):2014

    Google Scholar 

  • Skotis GD, Cumming DRS, Roberts JN et al (2015) Dynamic acoustic field activated cell separation (DAFACS). Lab Chip 15:802–810

    Article  Google Scholar 

  • Svennebring J, Manneberg O, Skafte-Pedersen P et al (2009) Selective bioparticle retention and characterization in a chip-integrated confocal ultrasonic cavity. Biotechnol Bioeng 103(2):323–328

    Google Scholar 

  • Tajudin AA, Petersson K, Lenshof A et al (2013) Integrated acoustic immunoaffinity-capture (IAI) platform for detection of PSA from whole blood samples. Lab Chip 13:1790–1796

    Article  Google Scholar 

  • Tenje M, Lundgren MN, Swärd-Nilsson A-M et al (2015a) Acoustophoretic removal of proteins from blood components. Biomed Microdevices 17(2015):95

    Article  Google Scholar 

  • Tenje M, Xia H, Evander M et al (2015b) Acoustic trapping as a generic non-contact incubation site for multiplex bead-based assays. Anal Chim Acta 853(2015):682–688

    Article  Google Scholar 

  • Thevoz P, Adams JD, Shea H et al (2010) Acoustophoretic synchronization of mammalian cells in microchannels. Anal Chem 82:3094–3098

    Article  Google Scholar 

  • Urbansky A, Lenshof A, Dykes J et al (2016) Affinity-bead-mediated enrichment of CD8+ lymphocytes from peripheral blood progenitor cell products using acoustophoresis. Micromachines 7:101

    Article  Google Scholar 

  • Vanherberghen B, Manneberg O, Christakou A et al (2010) Ultrasound-controlled cell aggregation in a multi-well chip. Lab Chip 10:2727–2732

    Article  Google Scholar 

  • Voorhees Norris J, Evander M, Horsman-Hall KM et al (2008) Acoustic differential extraction on a microdevice: improvements in fluidic control for separation of sperm cells and epithelial cell lysate. In: Locascio LE, Gaitan M, Paegel BM, Ross DJ, Vreeland WN (eds) Micro total analysis systems. Society for Chemistry and Micro-Nano Systems, San Diego, p 1156

    Google Scholar 

  • Voorhees Norris J, Evander M, Katie M, Horsman-Hall KM et al (2009) Acoustic differential extraction for forensic analysis of sexual assault evidence. Anal Chem 81:6089–6095

    Article  Google Scholar 

  • Warner B, Yu L, Blom M, Buesink W et al (2012) Improving flow cytometric assay performance using modular in-line acoustophoretic washing of lysed blood samples. In: CYTO 2012 ISAC XXVII International Congress, B78, p 184, 23–26 June, Leipzig, Germany

    Google Scholar 

  • Weiser MAH, Apfel RE, Neppiras EA (1984) Interparticle forces on red cells in a standing wave field. Acustica 56:114–119

    Google Scholar 

  • Wiklund M (2012) Acoustofluidics 12: biocompatibility and cell viability in microfluidic acoustic resonators. Lab Chip 12:2018–2028

    Article  Google Scholar 

  • Wiklund M, Nilsson S, Hertz H (2001) Ultrasonic trapping in capillaries for trace-amount biomedical analysis. J Appl Phys 90(1):1

    Article  Google Scholar 

  • Wiklund M, Spegel P, Nilsson S et al (2003) Ultrasonic-trap-enhanced selectivity in capillary electrophoresis. Ultrasonics 41(2003):329–333

    Article  Google Scholar 

  • Wiklund M, Green R, Ohlin M (2012) Acoustofluidics 14: applications of acoustic streaming in microfluidic devices. Lab Chip 12:2438–2451

    Article  Google Scholar 

  • Wiklund M, Christakou A, Ida II et al (2014) Ultrasound-induced cell-cell interaction studies in a multi-well microplate. Micromachines 2014(5):27–49

    Article  Google Scholar 

  • Withworth G, Grundy MA, Coakley WT (1991) Transport and harvesting of suspended microparticles using modulated ultrasound. Ultrasonics 29:439–444

    Article  Google Scholar 

  • Woodside SM, Bowen BD, Piret JM (1997) Measurement of ultrasonic forces for particle-liquid separations. AIChE J 43(7):1727–1736

    Google Scholar 

  • Yang AHJ, Soh HT (2012) Acoustophoretic sorting of viable mammalian cell in a microfluidic device. Anal Chem 84:10756–10762

    Article  Google Scholar 

  • Yeo LY, Friend JR (2014) Surface acoustic wave microfluidics. Annu Rev Fluid Mech 46:379–406

    Article  MathSciNet  MATH  Google Scholar 

  • Zalis MC, Reyes JF, Augustsson P et al (2016) Label-free concentration of viable neurons, hESCs, and cancer cells by means of acoutophoresis, Integr Biol 8:332–340

    Google Scholar 

  • Zhang X, Zhang G (2012) Acoustic radiation force of a gaussian beam incident on spherical particles in water. Ultrasound Med Biol 38(11):2007–2017

    Article  Google Scholar 

  • Zmijan R, Jonnalagadda US, Carugo D et al (2015) High throughput imaging cytometer with acoustic focusing. RCS Advances 101:83206–83216  

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Laurell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lenshof, A., Johannesson, C., Evander, M., Nilsson, J., Laurell, T. (2017). Acoustic Cell Manipulation. In: Lee, W., Tseng, P., Di Carlo, D. (eds) Microtechnology for Cell Manipulation and Sorting. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-44139-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44139-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44137-5

  • Online ISBN: 978-3-319-44139-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics