Skip to main content
Log in

Continuous oxygen supply in pump-less micro-bioreactor based on microfluidics

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

This research aims a continuous and uniform oxygen tensions and oxygen gradients supply in microfluidic cell culture chip based micro-bioreactor without any external pumps by modifying the existing siphon based perfusion strategy using conventional tools to control constant hydrostatic pressure for constant fluid flow rate. In this study, the microfluidic based micro-bioreactor is fabricated using a polydimethylsiloxane (PDMS) replication process. The micro-bioreactor chip is composed of simple oxygen perfusion setup connecting to capillary-like branched microchannels and a cell culture and support loading area. The function of the new pump-less fluid perfusion in microfluidic cell culture chip and maintains constant oxygen supply in the cell culture area has been experimentally evaluated. And the results demonstrate that this proposed microfluidic flow system in a micro-bioreactor is proved to provide a linear distribution of oxygen throughout the cell culture area without any external and internal interference. Also, oxygen diffusion into the culture area through a microscale channel has been successfully established by the constant hydraulic pressure controlled by siphoning effect. Such flow system was used in a PDMS based microfluidic micro-bioreactor design to provide the high-throughput oxygen diffusion and perfusion, and the uniform oxygen/nutrient distribution continuously supplied for dermal fibroblast cell culture. This could be a potential and effective model to be incorporated into tissue regeneration studies, drug screening model, and in cancer tissue model studies for understanding angiogenesis, where oxygen tension and perfusion cultures play important roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brivio, M., Verboom, W. & Reinhoudt, D.N. Miniaturized continuous flow reaction vessels: influence on chemical reactions. Lab Chip 6, 329–344 (2006).

    Article  CAS  Google Scholar 

  2. Baxendale, R., Ley, S.V., Mansfield, A.C. & Smith, C.D. Multistep synthesis using modular flow reactors: bestmann-ohira reagent for the formation of alkynes and triazoles. Angew. Chem. Int. Ed. 48, 4017–4021 (2009).

    Article  CAS  Google Scholar 

  3. Yi, C. et al. Optical and electrochemical detection techniques for cell based microfludic systems. Anal. Bioanal. Chem. 384, 1259–1268 (2006).

    Article  CAS  Google Scholar 

  4. Jahnisch, K., Hessel, V., Lowe, H. & Baerns, M. Chemistry in microstructured reactors. Angew. Chem. Int. Ed. 43, 406–446 (2004).

    Article  Google Scholar 

  5. Baret, J.C. et al. Fluorescence-activated droplet sorting (FADS): Efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9, 1850–1858 (2009).

    Article  CAS  Google Scholar 

  6. Zhan, Y.H., Wang, J., Bao, N. & Lu, C. Electroporation of cells in microflydic droplets. Anal. Chem. 81, 2027–2031 (2009).

    Article  CAS  Google Scholar 

  7. Schaerli, Y. et al. Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets. Anal. Chem. 81, 302–306 (2009).

    Article  CAS  Google Scholar 

  8. Bae, S., Kim, C.W., Choi, J.S., Yang, J.W. & Seo, T.S. An integrated microfluidic device for the high-throughput screening of microalgal cell culture conditions that induce high growth rate and lipid content. Anal. Bioanal. Chem. 405, 9365–9374 (2013).

    Article  CAS  Google Scholar 

  9. Hufnagel, H. et al. An integrated cell culture lab on a chip: modular microdevices for cultivation of mammalian cells and delivery into microfluidic microdroplets. Lab Chip 9, 1576–1582 (2009).

    Article  CAS  Google Scholar 

  10. Khademhosseini, A., Langer, R., Borenstein, J. & Vacanti, J.P. Microscale technologies for tissue engineering and biology. Proc. Nat. Acad. Sci. USA 103, 2480–2487 (2006).

    Article  CAS  Google Scholar 

  11. Radisic, M. et al. Biomimetic approach to cardiac tissue engineering: Oxygen carriers and channeled scaffolds, Tissue Eng. 12, 2077–2091 (2006).

    Article  CAS  Google Scholar 

  12. Leung, R., Poncelet, D. & Neufeld, R.J. Enhancement of oxygen transfer rate using microencapsulated silicone oils as oxygen carriers. Chem. Technol. Biotechnol. 68, 37–46 (1997).

    Article  CAS  Google Scholar 

  13. Mehta, G. et al. Quantitative measurement and control of oxygen levels in microfluidic poly (dimethylsiloxane) bioreactors during cell culture. Biomed. Microdevices 9, 123–134 (2007).

    Article  CAS  Google Scholar 

  14. Becker, H. & Gartner, C. Polymer processing for biomicrofluidics applications (part II), Anal. Bioanal. Chem. 390, 89–111 (2008).

    Article  CAS  Google Scholar 

  15. Adler, M., Polinkovsky, M., Gutierrez, E. & Groisman, A. Generation of oxygen gradients with arbitrary shapes in a microfluidic device. Lab Chip 10, 388–391 (2010).

    Article  CAS  Google Scholar 

  16. Skolimowski, M. et al. Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies. Lab Chip 10, 2162–2169 (2010).

    Article  CAS  Google Scholar 

  17. Chen, Y.A. et al. Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions. Lab Chip 11, 3626–3633 (2011).

    Article  CAS  Google Scholar 

  18. Kim, T. & Cho, Y.H. A pumpless cell culture chip with the constant medium perfusion-rate maintained by balanced droplet dispensing. Lab Chip 11, 1825–1830 (2011).

    Article  CAS  Google Scholar 

  19. Lee, D.W., Yi, S.H., Ku, B. & Kim, J. A pumpless perfusion cell culture cap with two parallel channel layers keeping the flow rate constant. Biotechnol. Prog. 28, 1466–1471 (2012).

    Article  CAS  Google Scholar 

  20. Marimuthu, M. & Kim, S. Pumpless steady-flow microfluidic chip for cell culture. Anal. Biochem. 437, 161–163 (2013).

    Article  CAS  Google Scholar 

  21. Harrison, B.S., Eberli, D., Lee, S.J., Atala, A. & Yoo, J.J. Oxygen producing biomaterials for tissue regeneration. Biomaterials 28, 4628–4634 (2007).

    Article  CAS  Google Scholar 

  22. Gerritsen, H.C., Sanders, R., Draaijer, A. & Levine, Y.K. Fluorescence lifetime imaging of oxygen in living cells. J. Fluoresc. 7, 11–16 (1997).

    Article  CAS  Google Scholar 

  23. Tsai, A.G., Johnson, P.C. & Intaglietta, M. Oxygen gradients in the microcirculation. Physiol. Rev. 83, 933–963 (2003).

    Article  CAS  Google Scholar 

  24. Balin, A.K. & Pratt, L. Oxygen modulates the growth of skin fibroblasts. In Vitro Cell Dev. Biol-Animal. 38, 305–310 (2002).

    Article  CAS  Google Scholar 

  25. Tokuda, Y., Crane, S., Yamaguchi, Y., Zhou, L. & Falanga, V. The levels and kinetics of oxygen tension detectable at the surface of human dermal fibroblast cultures. J. Cell. Physiol. 182, 414–420 (2000).

    Article  CAS  Google Scholar 

  26. Allen, R.G. et al. Development and age-associated differences in electron transport potential and consequences for oxidant generation. J. Biol. Chem. 272, 24805–24812 (1997).

    Article  CAS  Google Scholar 

  27. Keogh, B.E. et al. Expression of hydrogen peroxide and glutathione metabolizing enzymes in human skin fibroblasts derived from donors of different ages. J. Cell. Physiol. 167, 512–522 (1996).

    Article  CAS  Google Scholar 

  28. Jeong, W. et al. Hydrodynamic microfabrication via “on the fly” photopolymerization of microscale fibers and tubes. Lab Chip 4, 576–580 (2004).

    Article  CAS  Google Scholar 

  29. Potter, A. & Barnes, F.H. The siphon. Phys. Educ. 6, 362–366 (1971).

    Article  Google Scholar 

  30. Weinstein, S.M. & Plumer, A.L. Plumer’s principles and practice of intravenous therapy, 8th Edition, Lippincott Williams & Wilkins publications (1997).

    Google Scholar 

  31. Eddings, M.A. & Gale, B.K. A PDMS-based gas permeation pump for on-chip fluid handling in microfluidic devices. J. Micromech. Microeng. 16, 2396–2402 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghyo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marimuthu, M., Kim, S. Continuous oxygen supply in pump-less micro-bioreactor based on microfluidics. BioChip J 9, 1–9 (2015). https://doi.org/10.1007/s13206-014-9101-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-014-9101-3

Keywords

Navigation