Skip to main content
Log in

Recent Advances in 3D-Cultured Brain Tissue Models Derived from Human iPSCs

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Neurological diseases are caused by defects in the brain, spinal cord, or nervous system. Excluding animal models, ex vivo brain tissues and brain organoids have been used for modeling neurological diseases. In addition, the blood–brain barrier (BBB) is a selective semipermeable membrane that separates the peripheral blood from the neural tissue. Thus, it regulates homeostasis of the brain and selectively delivers substances essential for brain function. The property of the BBB can often be a double-edged sword by impeding the penetration of therapeutic drugs for brain diseases. Dysregulation of the BBB can lead to various neurological diseases. To date, significant efforts have been made to develop human brain organoids and BBB models with pluripotent stem cells for mimicking neurological diseases. Since human ex vivo brain tissues are difficult to obtain from a patient directly, induced pluripotent stem cells (iPSCs) generated by genetic reprogramming of adult somatic cells have been differentiated into specific neural cell types or brain organoids. Conventionally, major brain cell types including neurons, oligodendrocytes, and astrocytes have been generated from iPSCs in two-dimensional (2D) monolayer culture plates, whereas brain organoids have been differentiated in three-dimensional (3D) culture systems. Region-specific brain organoids become an important tool to study biological mechanisms of neurological disorders. Nonetheless, brain organoids generated in static conditions show several challenges in culture, which include diffusion limitation of nutrients and oxygen and removal of metabolic waste. To resolve these issues, microfluidic chip systems have been adopted for brain organoid culture and facilitate disease modeling and precision medicine. In this short review, we summarize recent advances in brain organoid culture with iPSCs and brain organoid-on-a-chip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Heffernan, A.L., Hare, D.J.: Tracing environmental exposure from neurodevelopment to neurodegeneration. Trends Neurosci. 41, 496–501 (2018)

    Article  CAS  PubMed  Google Scholar 

  2. Pacitti, D., Privolizzi, R., Bax, B.E.: Organs to cells and cells to organoids: the evolution of in vitro central nervous system modelling. Front Cell Neurosci. 13, 129 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee, S.J., Lee, H.A.: Trends in the development of human stem cell-based non-animal drug testing models. Korean J Physiol Pharmacol. 24, 441–452 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Akhtar, A.: The flaws and human harms of animal experimentation. Camb Q Healthc Ethics. 24, 407–419 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Takahashi, K., et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. Loh, Y.H., et al.: Generation of induced pluripotent stem cells from human blood. Blood 113, 5476–5479 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Choi, N.Y., et al.: Novel imprinted single CpG sites found by global DNA methylation analysis in human parthenogenetic induced pluripotent stem cells. Epigenetics 13, 343–351 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chandrasekaran, A., et al.: Astrocyte differentiation of human pluripotent stem cells: new tools for neurological disorder research. Front Cell Neurosci. 10, 215 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Biswas, S., et al.: Development of glial restricted human neural stem cells for oligodendrocyte differentiation in vitro and in vivo. Sci Rep. 9, 9013 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Douvaras, P., Fossati, V.: Generation and isolation of oligodendrocyte progenitor cells from human pluripotent stem cells. Nat Protoc. 10, 1143–1154 (2015)

    Article  CAS  PubMed  Google Scholar 

  11. Hu, B.Y., et al.: Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA. 107, 4335–4340 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bianchi, F., et al.: Rapid and efficient differentiation of functional motor neurons from human iPSC for neural injury modelling. Stem Cell Res. 32, 126–134 (2018)

    Article  CAS  PubMed  Google Scholar 

  13. Cheng, S.H., et al.: 4q loss is potentially an important genetic event in MM tumorigenesis: identification of a tumor suppressor gene regulated by promoter methylation at 4q13.3, platelet factor 4. Blood. 109, 2089–2099 (2007)

    Article  CAS  PubMed  Google Scholar 

  14. Kapalczynska, M., et al.: 2D and 3D cell cultures—a comparison of different types of cancer cell cultures. Arch Med Sci. 14, 910–919 (2018)

    PubMed  Google Scholar 

  15. Ravi, M., et al.: 3D cell culture systems: advantages and applications. J Cell Physiol. 230, 16–26 (2015)

    Article  CAS  PubMed  Google Scholar 

  16. Duval, K., et al.: Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda). 32, 266–277 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kitaeva, K.V., Rutland, C.S., Rizvanov, A.A., Solovyeva, V.V.: Cell culture based in vitro test systems for anticancer drug screening. Front Bioeng Biotechnol. 8, 322 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Langhans, S.A.: Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol. 9, 6 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kim, J., Koo, B.K., Knoblich, J.A.: Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 21, 571–584 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Velasco, V., Shariati, S.A., Esfandyarpour, R.: Microtechnology-based methods for organoid models. Microsyst Nanoeng. 6, 76 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Torok, E., et al.: Optimization of hepatocyte spheroid formation for hepatic tissue engineering on three-dimensional biodegradable polymer within a flow bioreactor prior to implantation. Cells Tissues Organs 169, 34–41 (2001)

    Article  CAS  PubMed  Google Scholar 

  22. Xia, Y., Izpisua Belmonte, J.C.: Design approaches for generating organ constructs. Cell Stem Cell. 24, 877–894 (2019)

    Article  CAS  PubMed  Google Scholar 

  23. Noh, Y.K., et al.: Polymer mesh scaffold combined with cell-derived ECM for osteogenesis of human mesenchymal stem cells. Biomater Res. 20, 6 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Tibbitt, M.W., Anseth, K.S.: Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng. 103, 655–663 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gurkan, U.A., et al.: Emerging technologies for assembly of microscale hydrogels. Adv Healthc Mater. 1, 149–158 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gattazzo, F., Urciuolo, A., Bonaldo, P.: Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 1840, 2506–2519 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Frantz, C., Stewart, K.M., Weaver, V.M.: The extracellular matrix at a glance. J Cell Sci. 123, 4195–4200 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lancaster, M.A., et al.: Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013)

    Article  CAS  PubMed  Google Scholar 

  29. Eiraku, M., et al.: Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. Qian, X., et al.: Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kadoshima, T., et al.: Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc Natl Acad Sci USA. 110, 20284–20289 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xiang, Y., et al.: Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell. 21, 383-398 e387 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jo, J., et al.: Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 19, 248–257 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xiang, Y., et al.: hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids. Cell Stem Cell. 24, 487-497 e487 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Park, D., Lim, J., Park, J.Y., Lee, S.H.: Concise review: stem cell microenvironment on a chip: current technologies for tissue engineering and stem cell biology. Stem Cells Transl Med. 4, 1352–1368 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saliba, J., et al.: Development of microplatforms to mimic the in vivo architecture of CNS and PNS physiology and their diseases. Genes (Basel) (2018). https://doi.org/10.3390/genes9060285

    Article  Google Scholar 

  37. Karzbrun, E., et al.: Human brain organoids on a chip reveal the physics of folding. Nat Phys. 14, 515–522 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cho, A.N., et al.: Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun. 12, 4730 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, Y., Wang, L., Zhu, Y., Qin, J.: Human brain organoid-on-a-chip to model prenatal nicotine exposure. Lab Chip. 18, 851–860 (2018)

    Article  CAS  PubMed  Google Scholar 

  40. Cui, K., et al.: Neurodevelopmental impairment induced by prenatal valproic acid exposure shown with the human cortical organoid-on-a-chip model. Microsyst Nanoeng. 6, 49 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bagley, J.A., et al.: Fused cerebral organoids model interactions between brain regions. Nat Methods. 14, 743–751 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chukwurah, E., Osmundsen, A., Davis, S.W., Lizarraga, S.B.: All together now: modeling the interaction of neural with non-neural systems using organoid models. Front Neurosci. 13, 582 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  43. Reiner, O., Sapir, T., Parichha, A.: Using multi-organ culture systems to study Parkinson’s disease. Mol Psychiatry. 26, 725–735 (2021)

    Article  PubMed  Google Scholar 

  44. Au, S.H., et al.: Hepatic organoids for microfluidic drug screening. Lab Chip. 14, 3290–3299 (2014)

    Article  CAS  PubMed  Google Scholar 

  45. Marsano, A., et al.: Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip. 16, 599–610 (2016)

    Article  CAS  PubMed  Google Scholar 

  46. Huh, D., et al.: Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee, H.N., et al.: Effect of biochemical and biomechanical factors on vascularization of kidney organoid-on-a-chip. Nano Converg. 8, 35 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jin, Y., et al.: Vascularized liver organoids generated using induced hepatic tissue and dynamic liver-specific microenvironment as a drug testing platform. Adv Funct Mater. (2018). https://doi.org/10.1002/adfm.201801954

    Article  Google Scholar 

  49. Skardal, A., et al.: Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci Rep. 7, 8837 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Mark, D., et al.: Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev. 39, 1153–1182 (2010)

    Article  CAS  PubMed  Google Scholar 

  51. Wu, Q., et al.: Organ-on-a-chip: recent breakthroughs and future prospects. Biomed Eng Online. 19, 9 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  52. Whitesides, G.M.: The origins and the future of microfluidics. Nature 442, 368–373 (2006)

    Article  CAS  PubMed  Google Scholar 

  53. Bhatia, S.N., Ingber, D.E.: Microfluidic organs-on-chips. Nat Biotechnol. 32, 760–772 (2014)

    Article  CAS  PubMed  Google Scholar 

  54. Vatine, G.D., et al.: Human iPSC-derived blood-brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell. 24, 995-1005 e1006 (2019)

    Article  CAS  PubMed  Google Scholar 

  55. Alahmari, A.: Blood-brain barrier overview: structural and functional correlation. Neural Plast. 2021, 6564585 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Helm, F., Fricker, G.: Liposomal conjugates for drug delivery to the central nervous system. Pharmaceutics. 7, 27–42 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ahn, S.I., et al.: Microengineered human blood-brain barrier platform for understanding nanoparticle transport mechanisms. Nat Commun. 11, 175 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abbott, N.J., et al.: Structure and function of the blood-brain barrier. Neurobiol Dis. 37, 13–25 (2010)

    Article  CAS  PubMed  Google Scholar 

  59. Palmiotti, C.A., et al.: In vitro cerebrovascular modeling in the 21st century: current and prospective technologies. Pharm Res. 31, 3229–3250 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cucullo, L., et al.: The role of shear stress in Blood-Brain Barrier endothelial physiology. BMC Neurosci. 12, 40 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Brown, J.A., et al.: Recreating blood-brain barrier physiology and structure on chip: a novel neurovascular microfluidic bioreactor. Biomicrofluidics 9, 054124 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Achyuta, A.K., et al.: A modular approach to create a neurovascular unit-on-a-chip. Lab Chip. 13, 542–553 (2013)

    Article  CAS  PubMed  Google Scholar 

  63. Jeong, S., et al.: A three-dimensional arrayed microfluidic blood-brain barrier model with integrated electrical sensor array. IEEE Trans Biomed Eng. 65, 431–439 (2018)

    Article  PubMed  Google Scholar 

  64. Jeong, S., et al.: Numerical approach-based simulation to predict cerebrovascular shear stress in a blood-brain barrier organ-on-a-chip. Biosens Bioelectron. 183, 113197 (2021)

    Article  CAS  PubMed  Google Scholar 

  65. Aday, S., et al.: Stem cell-based human blood-brain barrier models for drug discovery and delivery. Trends Biotechnol. 34, 382–393 (2016)

    Article  CAS  PubMed  Google Scholar 

  66. Delsing, L., et al.: Models of the blood-brain barrier using iPSC-derived cells. Mol Cell Neurosci. 107, 103533 (2020)

    Article  CAS  PubMed  Google Scholar 

  67. Delsing, L., et al.: Barrier properties and transcriptome expression in human iPSC-derived models of the blood-brain barrier. Stem Cells. 36, 1816–1827 (2018)

    Article  CAS  PubMed  Google Scholar 

  68. Qian, T., et al.: Directed differentiation of human pluripotent stem cells to blood-brain barrier endothelial cells. Sci Adv. 3, e1701679 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Linville, R.M., et al.: Human iPSC-derived blood-brain barrier microvessels: validation of barrier function and endothelial cell behavior. Biomaterials 190–191, 24–37 (2019)

    Article  PubMed  CAS  Google Scholar 

  70. Lee, C.T., et al. CYP3A5 mediates effects of cocaine on human neocorticogenesis: studies using an in vitro 3D self-organized hPSC model with a single cortex-like unit. Neuropsychopharmacology 42, 774–784 (2017)

    Article  CAS  PubMed  Google Scholar 

  71. Pasca, A.M., et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lancaster, M.A., Knoblich, J.A. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 9, 2329–2340 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT). (No. NRF-2021R1I1A3061265).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moo-Yeal Lee or Sehoon Jeong.

Ethics declarations

Conflict of Interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, N.Y., Lee, MY. & Jeong, S. Recent Advances in 3D-Cultured Brain Tissue Models Derived from Human iPSCs. BioChip J 16, 246–254 (2022). https://doi.org/10.1007/s13206-022-00075-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-022-00075-y

Keywords

Navigation