Skip to main content
Log in

Microfluidic Device to Maximize Capillary Force Driven Flows for Quantitative Single-Molecule DNA Analysis

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Microfluidics is flourishing due to its significant applications in life sciences and biomedical engineering. One of the key challenges in microfluidics is the manipulation and control of fluids within microscale channels. Capillary force-driven flows provide a potential solution to this challenge by eliminating the need for an external power source. Capillary force-driven flows are particularly useful for the reproducible and reliable quantitative analysis of single-molecule DNA. We have designed several microfluidic devices that employ capillary force to enhance the deposition of DNA molecules onto a positively charged glass surface from a sample solution. The optimization of specific dimensions within the microfluidic device resulted in increased efficiency of DNA deposition. Shortening the microchannel length reduced flow resistance and decreasing the microchannel height enhanced capillary force. Additionally, increasing the outlet reservoir capacity achieves mechanical equilibrium in situations where fluid flow is maximized. These optimizations served to maximize capillary force and improve DNA deposition on the glass surface. The developed device represents an ultra-sensitive platform for quantitative DNA analysis and rapid, accurate point-of-care testing with a minimum detection limit achieved. In conclusion, our work demonstrates the potential of capillary force-driven microfluidics for the reproducible and efficient manipulation of fluids within microscale channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tseng, Q., Lomonosov, A.M., Furlong, E.E.M., Merten, C.A.: Fragmentation of DNA in a sub-microliter microfluidic sonication device. Lab Chip 12, 4677–4682 (2012)

    Article  CAS  PubMed  Google Scholar 

  2. McClain, M.A., et al.: Microfluidic devices for the high-throughput chemical analysis of cells. Anal. Chem. 75, 5646–5655 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. Tehranirokh, M., Kouzani, A.Z., Francis, P.S., Kanwar, J.R.: Microfluidic devices for cell cultivation and proliferation. Biomicrofluidics 7, 51502 (2013)

    Article  PubMed  Google Scholar 

  4. Beauchamp, M.J., Gong, H., Woolley, A.T., Nordin, G.P.: 3D printed microfluidic features using dose control in X, Y, and Z dimensions. Micromachines (Basel) 9, 326 (2018)

    Article  PubMed  Google Scholar 

  5. Hansen, C.L., Classen, S., Berger, J.M., Quake, S.R.: A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination. J. Am. Chem. Soc. 128, 3142–3143 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. Selmi, M., Gazzah, M.H., Belmabrouk, H.: Optimization of microfluidic biosensor efficiency by means of fluid flow engineering. Sci. Rep. 7, 1–11 (2017)

    Article  CAS  Google Scholar 

  7. Lee, S., Kim, J.H., Kang, S.J., Chang, I.H., Park, J.Y.: Customized multilayered tissue-on-a-chip (MToC) to simulate Bacillus Calmette-Guérin (BCG) immunotherapy for bladder cancer treatment. BioChip J. 16, 67–81 (2022)

    Article  Google Scholar 

  8. Crevillén, A.G., Hervás, M., López, M.A., González, M.C., Escarpa, A.: Real sample analysis on microfluidic devices. Talanta 74, 342–357 (2007)

    Article  PubMed  Google Scholar 

  9. Horsman, K.M., Bienvenue, J.M., Blasier, K.R., Landers, J.P.: Forensic DNA analysis on microfluidic devices: a review. J. Forensic Sci. 52, 784–799 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. Wheeler, A.R., et al.: Microfluidic device for single-cell analysis. Anal. Chem. 75, 3581–3586 (2003)

    Article  CAS  PubMed  Google Scholar 

  11. Wang, R., Wang, X.: Sensing of inorganic ions in microfluidic devices. Sens. Actuat. B Chem. 329, 129171 (2021)

    Article  CAS  Google Scholar 

  12. Huyen, L.T.N., et al.: Flexible capillary microfluidic devices based on surface-energy modified polydimethylsiloxane and polymethylmethacrylate with room-temperature chemical bonding. BioChip J. 17, 120–132 (2023)

    Article  CAS  Google Scholar 

  13. Becker, H., Locascio, L.E.: Polymer microfluidic devices. Talanta 56, 267–287 (2002)

    Article  CAS  PubMed  Google Scholar 

  14. Yeo, L.Y., Chang, H.-C., Chan, P.P.Y., Friend, J.R.: Microfluidic devices for bioapplications. Small 7, 12–48 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. Niculescu, A.-G., Chircov, C., Bîrcă, A.C., Grumezescu, A.M.: Fabrication and applications of microfluidic devices: a review. Int. J. Mol. Sci. 22, 2011 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Na, H., Kang, B.H., Ku, J., Kim, Y., Jeong, K.H.: On-chip paper electrophoresis for ultrafast screening of infectious diseases. BioChip J. 15, 305–311 (2021)

    Article  CAS  Google Scholar 

  17. Stone, H.A., Kim, S.: Microfluidics: basic issues, applications, and challenges. AIChE J. 47, 1250–1254 (2001)

    Article  CAS  Google Scholar 

  18. Bruus, H. Theoretical microfluidics (2008)

  19. Battat, S., Weitz, D.A., Whitesides, G.M.: An outlook on microfluidics: the promise and the challenge. Lab Chip 22, 530–536 (2022)

    Article  CAS  PubMed  Google Scholar 

  20. Kawamata, T., Yamada, M., Yasuda, M., Seki, M.: Continuous and precise particle separation by electroosmotic flow control in microfluidic devices. Electrophoresis 29, 1423–1430 (2008)

    Article  CAS  PubMed  Google Scholar 

  21. Jo, K., Chen, Y.-L., de Pablo, J.J., Schwartz, D.C.: Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows. Lab Chip 9, 2348–2355 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Horiuchi, K., Dutta, P.: Electrokinetic flow control in microfluidic chips using a field-effect transistor. Lab Chip 6, 714–723 (2006)

    Article  CAS  PubMed  Google Scholar 

  23. Jo, K., et al.: Mass spectrometric imaging of peptide release from neuronal cells within microfluidic devices. Lab Chip 7, 1454–1460 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. Zeng, W., Jacobi, I., Beck, D.J., Li, S., Stone, H.A.: Characterization of syringe-pump-driven induced pressure fluctuations in elastic microchannels. Lab Chip 15, 1110–1115 (2015)

    Article  CAS  PubMed  Google Scholar 

  25. Parittotokkaporn, S., et al.: Make it simple: long-term stable gradient generation in a microfluidic microdevice. Biomed. Microdev. 21, 77 (2019)

    Article  Google Scholar 

  26. Harrison, D.J., Manz, A., Fan, Z.H., Luedi, H., Widmer, H.M.: Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal. Chem. 64, 1926–1932 (1992)

    Article  CAS  Google Scholar 

  27. Harrison, D.J., et al.: Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261, 895–897 (1993)

    Article  CAS  PubMed  Google Scholar 

  28. Jo, K., et al.: A single-molecule barcoding system using nanoslits for DNA analysis. Proc. Natl. Acad. Sci. 104, 2673–2678 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim, Y., et al.: Nanochannel confinement: DNA stretch approaching full contour length. Lab Chip 11, 1721–1729 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, S., et al.: Nanochannel-confined TAMRA-polypyrrole stained DNA stretching by varying the ionic strength from micromolar to millimolar concentrations. Polymers 11, 15 (2019)

    Article  Google Scholar 

  31. Delamarche, E., et al.: Microfluidic networks for chemical patterning of substrates: design and application to bioassays. J. Am. Chem. Soc. 120, 500–508 (1998)

    Article  CAS  Google Scholar 

  32. Dimalanta, E.T., et al.: A microfluidic system for large DNA molecule arrays. Anal Chem 76, 5293–5301 (2004)

    Article  CAS  PubMed  Google Scholar 

  33. Kim, T., et al.: Counting DNA molecules on a microchannel surface for quantitative analysis. Talanta 252, 123826 (2023)

    Article  CAS  PubMed  Google Scholar 

  34. Shrewsbury, P., Muller, S., Liepmann, D.: Characterization of DNA flow through microchannels. In: Technical Proceedings of the 1999 International Conference on Modeling and Simulation of Microsystems: Chpt Vol. 16 (Citeseer, 1999)

  35. Teixeira, R.E., Babcock, H.P., Shaqfeh, E.S.G., Chu, S.: Shear thinning and tumbling dynamics of single polymers in the flow-gradient plane. Macromolecules 38, 581–592 (2005)

    Article  CAS  Google Scholar 

  36. Socol, M., et al.: Contraction and tumbling dynamics of DNA in shear flows under confinement induced by transverse viscoelastic forces. Macromolecules 52, 1843–1852 (2019)

    Article  CAS  Google Scholar 

  37. Günther, K., Mertig, M., Seidel, R.: Mechanical and structural properties of YOYO-1 complexed DNA. Nucleic Acids Res 38, 6526–6532 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bong, S., et al.: AT-specific DNA visualization revisits the directionality of bacteriophage λ DNA ejection. Nucleic Acids Res 51, 5634–5646 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen, Y.L., Graham, M.D., de Pablo, J.J., Jo, K., Schwartz, D.C.: DNA molecules in microfluidic oscillatory flow. Macromolecules 38, 6680–6687 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bruus, H.: Theoretical microfluidics. Oxford University Press, Oxford (2007)

    Google Scholar 

  41. Olanrewaju, A., Beaugrand, M., Yafia, M., Juncker, D.: Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Lab Chip 18, 2323–2347 (2018)

    Article  CAS  PubMed  Google Scholar 

  42. Marko, J.F., Siggia, E.D.: Stretching DNA. Macromolecules 28, 8759–8770 (1995)

    Article  CAS  Google Scholar 

  43. Robertson, R.M., Laib, S., Smith, D.E.: Diffusion of isolated DNA molecules: dependence on length and topology. Proc Natl Acad Sci U S A 103, 7310–7314 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Choi, S.: Powering point-of-care diagnostic devices. Biotechnol. Adv. 34, 321–330 (2016)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant NRF-2016R1A6A1A03012845, and RS-2023-00245053. The grammar and expression of the manuscript was corrected using ChatGPT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyubong Jo.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T., Jo, K. Microfluidic Device to Maximize Capillary Force Driven Flows for Quantitative Single-Molecule DNA Analysis. BioChip J 17, 384–392 (2023). https://doi.org/10.1007/s13206-023-00115-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-023-00115-1

Keywords

Navigation