Skip to main content

Droplet Microfluidics—A Tool for Biosensing and Bioengineering Applications

  • Chapter
  • First Online:
Advanced Micro- and Nano-manufacturing Technologies

Abstract

Disease detection, single-cell analysis, biochemical reactions, etc. are of profound interest in several biomedical and bioengineering applications. These important processes require several profound aspects, e.g., lower consumption of reagent, rapid reactions, rapid detection, high throughput, etc. needs to be satiated. Droplet microfluidics has addressed all the desired aspects needed to achieve these applications by providing a compatible environment for biosensing and bioengineering reactions, smaller footprint, rapid detection, quick reaction, etc. These advantageous features have made droplet microfluidics a potent high throughput platform for biomedical research and applications. In addition to this, droplet microfluidics facilitates encapsulation of cells, reagents, drugs, particle synthesis, which makes droplet microfluidics a promising tool for biosensing and bioengineering applications. In this chapter, we will discuss both open surface and in-channel droplet microfluidics and their role in several biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nematbakhsh, Y., Lim, C.T.: Cell biomechanics and its applications in human disease diagnosis. Acta Mech. Sin. Xuebao 31, 268–273 (2015)

    Article  Google Scholar 

  2. Liu, C., et al.: A high-efficiency superhydrophobic plasma separator. Lab Chip 16, 553–560 (2016)

    Article  Google Scholar 

  3. Liu, D., Zhang, H., Fontana, F., Hirvonen, J.T., Santos, H.A.: Microfluidic-assisted fabrication of carriers for controlled drug delivery. Lab Chip 17, 1856–1883 (2017)

    Article  Google Scholar 

  4. Mandal, C., Banerjee, U., Sen, A.K.: Transport of a sessile aqueous droplet over spikes of oil based ferrofluid in the presence of a magnetic field. Langmuir 35, acs.langmuir.9b00631 (2019)

    Google Scholar 

  5. Jiao, L., et al.: Light-actuated droplets coalescence and ion detection on the CAHTs-assisted superhydrophobic surface. Sensors and Actuators B : Chemical (2018). https://doi.org/10.1016/j.snb.2018.11.084

  6. Jayaprakash, K.S., Sen, A.K.: Droplet encapsulation of particles in different regimes and sorting of particle-encapsulating-droplets from empty droplets. Biomicrofluidics 13, 1–11 (2019)

    Article  Google Scholar 

  7. Jain, S.K., Banerjee, U., Sen, A.K.: Trapping and coalescence of diamagnetic aqueous droplets using negative magnetophoresis (2020)

    Google Scholar 

  8. Jayaprakash, K.S., Banerjee, U., Sen, A.K.: Dynamics of aqueous droplets at the interface of coflowing immiscible oils in a microchannel. Langmuir 32, 2136–2143 (2016)

    Article  Google Scholar 

  9. Chowdhury, I.U., Mahapatra, P.S., Sen, A.K.: Self-driven droplet transport: effect of wettability gradient and confinement. Phys. Fluids 31 (2019)

    Google Scholar 

  10. Srivastava, A., Karthick, S., Jayaprakash, K.S., Sen, A.K.: Droplet demulsification using ultralow voltage-based electrocoalescence. Langmuir 34, 1520–1527 (2018)

    Article  Google Scholar 

  11. Park, S.-Y., Kalim, S., Callahan, C., Teitell, M.A., Chiou, E.P.Y.: A light-induced dielectrophoretic droplet manipulation platform. Lab Chip 9, 3228 (2009)

    Article  Google Scholar 

  12. Banerjee, U., Raj, A., Sen, A.K.: Dynamics of aqueous ferrofluid droplets at coflowing liquid-liquid interface under a non-uniform magnetic field. Appl. Phys. Lett. 113, 143702 (2018)

    Article  Google Scholar 

  13. Lai, S., et al.: Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal. Chem. 76, 1832–1837 (2004)

    Article  Google Scholar 

  14. Wei, W., et al.: Microchip platforms for multiplex single-cell functional proteomics with applications to immunology and cancer research. Genome Med. 5, 1–12 (2013)

    Article  Google Scholar 

  15. Ding, Y., Howes, P.D., Demello, A.J.: Recent advances in droplet microfluidics. Anal. Chem. (2019). https://doi.org/10.1021/acs.analchem.9b05047

    Article  Google Scholar 

  16. Gu, S.Q., et al.: Multifunctional picoliter droplet manipulation platform and its application in single cell analysis. Anal. Chem. 83, 7570–7576 (2011)

    Article  Google Scholar 

  17. Garcia-Cordero, J.L., Fan, Z.H.: Sessile droplets for chemical and biological assays. Lab Chip 17, 2150–2166 (2017)

    Article  Google Scholar 

  18. Xu, T., Xu, L.P., Zhang, X., Wang, S.: Bioinspired superwettable micropatterns for biosensing. Chem. Soc. Rev. 48, 3153–3165 (2019)

    Article  Google Scholar 

  19. Ma, X., et al.: Hybrid superhydrophilic–superhydrophobic micro/nanostructures fabricated by femtosecond laser-induced forward transfer for sub-femtomolar Raman detection. Microsyst. Nanoeng. 5, 1–10 (2019)

    Article  Google Scholar 

  20. Ebrahimi, A., et al.: Nanotextured superhydrophobic electrodes enable detection of attomolar-scale DNA concentration within a droplet by non-faradaic impedance spectroscopy. Lab Chip 13, 4248–4256 (2013)

    Article  Google Scholar 

  21. Young, T.: An Essay on the cohesion of fluids. Philos. Trans. R. Soc. London 95, 65–87 (1805)

    Article  Google Scholar 

  22. Wenzel, R.N.: Resistance of solid surfaces to wetting by water. J. Ind. Eng. Chem. Washington, DC 28, 988–994 (1936)

    Google Scholar 

  23. Bormashenko, E.: Young, Boruvka-Neumann, Wenzel and Cassie-Baxter equations as the transversality conditions for the variational problem of wetting. Colloids Surfaces A: Physicochem. Eng. Aspects 345, 163–165 (2009)

    Article  Google Scholar 

  24. Madou, M.J.: Fundamentals of Microfabrication. CRC Press (2002). https://doi.org/10.1201/9781482274004

  25. Brittain, S., Paul, K., Zhao, X.-M., Whitesides, G.: Soft lithography and microfabrication. Phys. World 11, 31 (1998)

    Article  Google Scholar 

  26. Wang, J.H.: Surface preparation techniques for biomedical applications. In: Coatings for Biomedical Applications. Elsevier, pp. 143–175 (2012). https://doi.org/10.1533/9780857093677.1.143

  27. Luz, G.M., Leite, Á.J., Neto, A.I., Song, W., Mano, J.F.: Wettable arrays onto superhydrophobic surfaces for bioactivity testing of inorganic nanoparticles. Mater. Lett. 65, 296–299 (2011)

    Article  Google Scholar 

  28. Rahmawan, Y., Xu, L., Yang, S.: Self-assembly of nanostructures towards transparent, superhydrophobic surfaces. J. Mater. Chem. A 1, 2955–2969 (2013)

    Article  Google Scholar 

  29. Majhy, B., Iqbal, R., Sen, A.K.: Facile fabrication and mechanistic understanding of a transparent reversible superhydrophobic–superhydrophilic surface. Sci. Rep. 1–11 (2018). https://doi.org/10.1038/s41598-018-37016-5

  30. Iqbal, R., Majhy, B., Sen, A.K.: Facile fabrication and characterization of a PDMS-derived candle soot coated stable biocompatible superhydrophobic and superhemophobic surface. ACS Appl. Mater. Interfaces (2017). https://doi.org/10.1021/acsami.7b09708

  31. Chou, C.C., et al.: Oxidized dopamine as the interlayer between heparin/collagen polyelectrolyte multilayers and titanium substrate: an investigation of the coating’s adhesion and hemocompatibility. Surf. Coatings Technol. 303, 277–282 (2016)

    Article  Google Scholar 

  32. Lin, W.C., Liu, T.Y., Yang, M.C.: Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate. Biomaterials 25, 1947–1957 (2004)

    Article  Google Scholar 

  33. Sorkin, J.A., Hughes, S., Soares, P., Popat, K.C.: Titania nanotube arrays as interfaces for neural prostheses. Mater. Sci. Eng. C 49, 735–745 (2015)

    Article  Google Scholar 

  34. Smith, B.S., Yoriya, S., Johnson, T., Popat, K.C.: Dermal fibroblast and epidermal keratinocyte functionality on titania nanotube arrays. Acta Biomater. 7, 2686–2696 (2011)

    Article  Google Scholar 

  35. Smith, B.S., Capellato, P., Kelley, S., Gonzalez-Juarrero, M., Popat, K.C.: Reduced in vitro immune response on titania nanotube arrays compared to titanium surface. Biomater. Sci. 1, 322–332 (2013)

    Article  Google Scholar 

  36. Movafaghi, S., et al.: Hemocompatibility of superhemophobic titania surfaces. Adv. Healthc. Mater. 6 (2017)

    Google Scholar 

  37. Iqbal, R., Majhy, B., Sen, A.K.: Facile fabrication and characterization of a PDMS-derived candle soot coated stable biocompatible superhydrophobic and superhemophobic surface. ACS Appl. Mater. Interfaces 9, 31170–31180 (2017)

    Article  Google Scholar 

  38. Jokinen, V., Kankuri, E., Hoshian, S., Franssila, S., Ras, R.H.A.: Superhydrophobic blood-repellent surfaces. Adv. Mater. 30, 1–10 (2018)

    Google Scholar 

  39. Maria, M.S., Kumar, B.S., Chandra, T.S., Sen, A.K.: Development of a microfluidic device for cell concentration and blood cell-plasma separation. Biomed. Microdevices 17, 1–19 (2015)

    Article  Google Scholar 

  40. Choi, W., Shin, J., Hyun, K.A., Song, J., Jung, H.I.: Highly sensitive and accurate estimation of bloodstain age using smartphone. Biosens. Bioelectron. 130, 414–419 (2019)

    Article  Google Scholar 

  41. Chen, R., Zhang, L., Zang, D., Shen, W.: Blood drop patterns: formation and applications. Adv. Colloid Interface Sci. 231, 1–14 (2016)

    Article  Google Scholar 

  42. Tomaiuolo, G.: Biomechanical properties of red blood cells in health and disease towards microfluidics. Biomicrofluidics 8, 1–19 (2014)

    Article  Google Scholar 

  43. van Oorschot, R.A.H., Szkuta, B., Meakin, G.E., Kokshoorn, B., Goray, M.: DNA transfer in forensic science: a review. Forensic Sci. Int. Genet. 38, 140–166 (2019)

    Article  Google Scholar 

  44. Trantum, J.R., Baglia, M.L., Eagleton, Z.E., Mernaugh, R.L., Haselton, F.R.: Biosensor design based on Marangoni flow in an evaporating drop. Lab Chip 14, 315–324 (2014)

    Article  Google Scholar 

  45. Yakhno, T.A., Sanina, O.A., Volovik, M.G., Sanin, A.G., Yakhno, V.G.: Thermographic investigation of the temperature field dynamics at the liquid-air interface in drops of water solutions drying on a glass substrate. Tech. Phys. 57, 915–922 (2012)

    Article  Google Scholar 

  46. Chen, R., Zhang, L., Zang, D., Shen, W.: Understanding desiccation patterns of blood sessile drops. J. Mater. Chem. B 5, 8991–8998 (2017)

    Article  Google Scholar 

  47. Bahmani, L., Neysari, M., Maleki, M.: The study of drying and pattern formation of whole human blood drops and the effect of thalassaemia and neonatal jaundice on the patterns. Colloids Surf. A: Physicochem. Eng. Aspects 513, 66–75 (2017)

    Article  Google Scholar 

  48. Zeid, W.B., Brutin, D.: Influence of relative humidity on spreading, pattern formation and adhesion of a drying drop of whole blood. Colloids Surf. A: Physicochem. Eng. Aspects 430, 1–7 (2013)

    Article  Google Scholar 

  49. Brutin, D., Sobac, B., Nicloux, C.: Influence of substrate nature on the evaporation of a sessile drop of blood. J. Heat Transfer 134, 1–7 (2012)

    Article  Google Scholar 

  50. Brutin, D., Sobac, B., Loquet, B., Sampol, J.: Pattern formation in drying drops of blood. J. Fluid Mech. 667, 85–95 (2011)

    Article  MATH  Google Scholar 

  51. Sobac, B., Brutin, D.: Desiccation of a sessile drop of blood: cracks, folds formation and delamination. Colloids Surf. A: Physicochem. Eng. Aspects 448, 34–44 (2014)

    Article  Google Scholar 

  52. Sobac, B., Brutin, D.: Structural and evaporative evolutions in desiccating sessile drops of blood. Phys. Rev. E—Stat. Nonlinear, Soft Matter Phys. 84, 1–5 (2011)

    Article  Google Scholar 

  53. Mukhopadhyay, M., et al.: Interfacial energy driven distinctive pattern formation during the drying of blood droplets. J. Colloid Interface Sci. 573, 307–316 (2020)

    Article  Google Scholar 

  54. Gulka, C.P., et al.: Coffee rings as low-resource diagnostics: detection of the malaria biomarker plasmodium falciparum histidine-rich protein-II using a surface-coupled ring of Ni(II)NTA gold-plated polystyrene particles. ACS Appl. Mater. Interfaces 6, 6257–6263 (2014)

    Article  Google Scholar 

  55. Deegan, R.D., et al.: Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997)

    Article  Google Scholar 

  56. Xu, T., et al.: Superwettable microchips as a platform toward microgravity biosensing. ACS Nano 11, 621–626 (2017)

    Article  Google Scholar 

  57. Han, H., et al.: Single-droplet multiplex bioassay on a robust and stretchable extreme wetting substrate through vacuum-based droplet manipulation. ACS Nano 12, 932–941 (2018)

    Article  Google Scholar 

  58. Hou, J., et al.: Hydrophilic-hydrophobic patterned molecularly imprinted photonic crystal sensors for high-sensitive colorimetric detection of tetracycline. Small 11, 2738–2742 (2015)

    Article  Google Scholar 

  59. Hernandez-Perez, R., Fan, Z.H., Garcia-Cordero, J.L.: Evaporation-driven bioassays in suspended droplets. Anal. Chem. 88, 7312–7317 (2016)

    Article  Google Scholar 

  60. Li, J.F., Zhang, Y.J., Ding, S.Y., Panneerselvam, R., Tian, Z.Q.: Core-shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 117, 5002–5069 (2017)

    Article  Google Scholar 

  61. De Angelis, F., et al.: Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat. Photonics 5, 682–687 (2011)

    Article  Google Scholar 

  62. Lee, M., et al.: Subnanomolar sensitivity of filter paper-based SERS sensor for pesticide detection by hydrophobicity change of paper surface. ACS Sens. 3, 151–159 (2018)

    Article  Google Scholar 

  63. Song, Y., Xu, T., Xu, L.P., Zhang, X.: Superwettable nanodendritic gold substrates for direct miRNA SERS detection. Nanoscale 10, 20990–20994 (2018)

    Article  Google Scholar 

  64. Surya, H.P.N., Parayil, S., Banerjee, U., Chander, S., Sen, A.K.: Alternating and merged droplets in a double T-junction microchannel. Biochip J. 9, 16–26 (2015)

    Article  Google Scholar 

  65. Hatch, A.C., Patel, A., Beer, N.R., Lee, A.P.: Passive droplet sorting using viscoelastic flow focusing. Lab Chip 13, 1308–1315 (2013)

    Article  Google Scholar 

  66. Zhu, P., Wang, L.: Passive and active droplet generation with microfluidics: a review. Lab Chip 17, 34–75 (2017)

    Article  Google Scholar 

  67. Shang, L., Cheng, Y., Zhao, Y.: Emerging droplet microfluidics. Chem. Rev. 117, 7964–8040 (2017)

    Article  Google Scholar 

  68. Gach, P.C., Iwai, K., Kim, P.W., Hillson, N.J., Singh, A.K.: Droplet microfluidics for synthetic biology. Lab Chip 17, 3388–3400 (2017)

    Article  Google Scholar 

  69. Feng, S., Shirani, E., Inglis, D.W.: Droplets for sampling and transport of chemical signals in biosensing: a review. Biosensors 9, 1–14 (2019)

    Article  Google Scholar 

  70. Chen, D.L., Ismagilov, R.F.: Microfluidic cartridges preloaded with nanoliter plugs of reagents: an alternative to 96-well plates for screening. Curr. Opin. Chem. Biol. 10, 226–231 (2006)

    Article  Google Scholar 

  71. Song, H., Ismagilov, R.F.: Millisecond Kinetics on a Microfluidic Chip Using Nanoliters of Reagents. J. Am. Chem. Soc. 125, 14613–14619 (2003)

    Article  Google Scholar 

  72. Sciambi, A., Abate, A.R.: Adding reagent to droplets with controlled rupture of encapsulated double emulsions. Biomicrofluidics 7, 1–7 (2013)

    Article  Google Scholar 

  73. Abate, A.R., Hung, T., Mary, P., Agresti, J.J., Weitz, D.A.: High-throughput injection with microfluidics using picoinjectors. Proc. Natl. Acad. Sci. U.S.A. 107, 19163–19166 (2010)

    Article  Google Scholar 

  74. Hou, L., et al.: A simple microfluidic method for one-step encapsulation of reagents with varying concentrations in double emulsion drops for nanoliter-scale reactions and analyses. Anal. Methods 9, 2511–2516 (2017)

    Article  Google Scholar 

  75. Wen, N., et al.: Development of droplet microfluidics enabling high-throughput single-cell analysis. Molecules 21, 1–13 (2016)

    Article  Google Scholar 

  76. Droplet microfluidics—a tool for single-cell analysis.pdf

    Google Scholar 

  77. Kemna, E.W.M., et al.: High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab Chip 12, 2881–2887 (2012)

    Article  Google Scholar 

  78. Edd, J.F., et al.: Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8, 1262–1264 (2008)

    Article  Google Scholar 

  79. Jing, T., et al.: Jetting microfluidics with size-sorting capability for single-cell protease detection. Biosens. Bioelectron. 66, 19–23 (2015)

    Article  Google Scholar 

  80. Jayaprakash, K.S., Sen, A.K.: Droplet encapsulation of particles in different regimes and sorting of particle-encapsulating-droplets from empty droplets. Biomicrofluidics 13 (2019)

    Google Scholar 

  81. Wu, L., Chen, P., Dong, Y., Feng, X., Liu, B.F.: Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting. Biomed. Microdevices 15, 553–560 (2013)

    Article  Google Scholar 

  82. Guo, F., et al.: Droplet electric separator microfluidic device for cell sorting. Appl. Phys. Lett. 96 (2010)

    Google Scholar 

  83. Hemachandran, E., Laurell, T., Sen, A.K.: Continuous droplet coalescence in a microchannel coflow using bulk acoustic waves. Phys. Rev. Appl. 12, 1 (2019)

    Article  Google Scholar 

  84. Banerjee, U., Mandal, C., Jain, S.K., Sen, A.K.: Cross-stream migration and coalescence of droplets in a microchannel co-flow using magnetophoresis. Phys. Fluids 31 (2019)

    Google Scholar 

  85. Sung, Y.J., Kim, J.Y.H., Choi, H.I., Kwak, H.S., Sim, S.J.: Magnetophoretic sorting of microdroplets with different microalgal cell densities for rapid isolation of fast growing strains. Sci. Rep. 7, 1–11 (2017)

    Article  Google Scholar 

  86. Navi, M., Abbasi, N., Jeyhani, M., Gnyawali, V., Tsai, S.S.H.: Microfluidic diamagnetic water-in-water droplets: a biocompatible cell encapsulation and manipulation platform. Lab Chip 18, 3361–3370 (2018)

    Article  Google Scholar 

  87. Windbergs, M., Zhao, Y., Heyman, J., Weitz, D.A.: Biodegradable core-shell carriers for simultaneous encapsulation of synergistic actives. J. Am. Chem. Soc. 135, 7933–7937 (2013)

    Article  Google Scholar 

  88. Xu, Q., et al.: Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small 5, 1575–1581 (2009)

    Article  Google Scholar 

  89. Huang, K.S., et al.: Microfluidic controlling monodisperse microdroplet for 5-fluorouracil loaded genipin-gelatin microcapsules. J. Control. Release 137, 15–19 (2009)

    Article  Google Scholar 

  90. Zhang, B., et al.: Multifunctional inverse opal particles for drug delivery and monitoring. Nanoscale 7, 10590–10594 (2015)

    Article  Google Scholar 

  91. Zhang, H., et al.: Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix. Adv. Mater. 26, 4497–4503 (2014)

    Article  Google Scholar 

  92. Sciambi, A., Abate, A.R.: Accurate microfluidic sorting of droplets at 30 kHz. Lab Chip 15, 47–51 (2015)

    Article  Google Scholar 

  93. Huang, M., et al.: Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast. Proc. Natl. Acad. Sci. U.S.A. 112, E4689–E4696 (2015)

    Article  Google Scholar 

  94. Weiss, M., et al.: Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. Nat. Mater. 17, 89–95 (2018)

    Article  Google Scholar 

  95. Hindson, B.J., et al.: High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610 (2011)

    Article  Google Scholar 

  96. Pratt, E.D., et al.: Multiplex enrichment and detection of rare KRAS mutations in liquid biopsy samples using digital droplet pre-amplification. Anal. Chem. 91, 7516–7523 (2019)

    Article  Google Scholar 

  97. Kleine-Brüggeney, H., et al.: Long-term perfusion culture of monoclonal embryonic stem cells in 3D hydrogel beads for continuous optical analysis of differentiation. Small 15, 1–11 (2019)

    Article  Google Scholar 

  98. Liu, L., Dalal, C.K., Heineike, B.M., Abate, A.R.: High throughput gene expression profiling of yeast colonies with microgel-culture drop-seq. Lab Chip 19, 1838–1849 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, U., Iqbal, R., Hazra, S., Satpathi, N., Sen, A.K. (2022). Droplet Microfluidics—A Tool for Biosensing and Bioengineering Applications. In: Joshi, S.N., Chandra, P. (eds) Advanced Micro- and Nano-manufacturing Technologies. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-3645-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3645-5_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3644-8

  • Online ISBN: 978-981-16-3645-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics