Skip to main content
Log in

Separation of White Blood Cells in a Wavy Type Microfluidic Device Using Blood Diluted in a Hypertonic Saline Solution

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

White blood cells (WBCs) provide crucial information pertaining to human health, and its separation from other blood constituents is imperative for blood-based diagnostics of various pathological conditions. However, efficient WBC separation and enrichment remain to be a challenge. We propose a novel mechanism of WBC separation in a microfluidic device using centrifugal forces, inertial forces, and diluted human blood prepared with hypertonic saline solution. Herein, a simple wavy type microchannel called the separation channel was designed to separate and enrich WBCs. Almost 88% of WBCs were separated with a purity of 83% with diluted blood, i.e., hematocrit (Hct) 2.8% prepared using a 10% hypertonic solution. In addition, the effect of hematocrit and flow rate on WBC separation is also reported in this work. The proposed microdevice can be used for enrichment and separation of WBCs and also develop a better understanding of the interactions amongst blood cells with altered properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ρ :

Density of fluid (kg/m3)

μ :

Dynamic viscosity of fluid (Pa.s)

d p :

Particle/cell diameter (m)

d h :

Hydraulic diameter (m)

De:

Dean Number

Ref :

Flow Reynolds number

Rech :

Channel Reynolds number

Rep :

Particle Reynolds number

δ :

Curvature ratio

F D :

Dean drag force (N)

F L :

Net lift force (N)

F C :

Centrifugal force (N)

R f :

Ratio of lift to drag force

λ :

Confinement ratio

\({\eta }_{\mathrm{sep}}\) :

Separation efficiency

Ø :

Purity/RBC rejection ratio

References

  1. Fung, Y.C.: Biomechanics: mechanical properties of living tissues, vol. 2. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  2. Caro, C.G.: The mechanics of the circulation, 2nd edn. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  3. Ting-Beall, H.P., Needham, D., Hochmuth, R.M.: Volume and osmotic properties of human neutrophils. Blood 81, 2774–2780 (1993)

    Article  CAS  PubMed  Google Scholar 

  4. Munn, L.L., Dupin, M.M.: Blood cell interactions and segregation in flow. Ann. Biomed. Eng. 36, 534–544 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cheng, X., Irimiaa, D., Dixon, M., Sekine, K., Demirci, U., Zamir, L., Tompkins, R.G., Rodriguezb, W., Toner, M.: A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects. Lab Chip 7, 170–178 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. Choi, S., Song, S., Choi, C., Park, J.K.: Continuous blood cell separation by hydrophoretic filtration. Lab Chip 7, 1532–1538 (2007)

    Article  CAS  PubMed  Google Scholar 

  7. Tan, J.K.S., Park, S.Y., Leo, H.L., Kim, S.: Continuous separation of white blood cells from whole blood using viscoelastic effects. IEEE Trans. Biomed. Circuits Syst. 11, 1431–1437 (2017)

    Article  PubMed  Google Scholar 

  8. Bruil, A., Aken, W.G.V., Beugeling, T., Feijen, J.: Asymmetric membrane filters for the removal of leukocytes from blood. J. Biomed. Mater. Res. 25, 1459–1480 (1991)

    Article  CAS  PubMed  Google Scholar 

  9. Li, X., Chen, W., Liu, G., Lu, W., Fu, J.: Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes. Lab Chip 14, 2565–2575 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sethu, P., Anahtar, M., Moldawer, L.L., Tompkins, R.G., Toner, M.: Continuous flow microfluidic device for rapid erythrocyte lysis. Anal. Chem. 76, 6247–6253 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. Nivedita, N., Papautsky, I.: Continuous separation of blood cells in spiral microfluidic devices. Biomicrofluidics 7, 1–14 (2013)

    Article  CAS  Google Scholar 

  12. Tay, H.M., Petchacup, C., Dalan, R., Hou, H.W.: Leukocyte fractionation using inertial microfluidics. Conf. Miniaturized Syst. Chem. Life Sci. 367–369 (2015)

  13. Bossuyt, X., Marti, G.E., Fleisher, T.A.: Comparative analysis of whole blood lysis methods for flow cytometry. Cytometry 30, 124–133 (1997)

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, J., Yuan, D., Sluyter, R., Yan, S., Zhao, Q., Xia, H., Tan, S.H., Nguyen, N.T., Li, W.: High-throughput separation of white blood cells from whole blood using inertial microfluidics. IEEE Trans. Biomed. Circuits Syst. (2017). https://doi.org/10.1109/TBCAS.2017.2735440

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sethu, P., Moldawer, L.L., Mindrinos, M.N., Scumpia, P.O., Tannahill, C.L., Wilhelmy, J., Efron, P.A., Brownstein, B.H., Tompkins, R.G., Toner, M.: Microfluidic isolation of leukocytes from whole blood for phenotype and gene expression analysis. Anal. Chem. 78, 5453–5461 (2006)

    Article  CAS  PubMed  Google Scholar 

  16. Wu, Z., Chen, Y., Wang, M., Chung, A.J.: Continuous inertial microparticle and blood cell separation in straight channels with local microstructures. Lab Chip 16, 532–542 (2016)

    Article  CAS  PubMed  Google Scholar 

  17. Laxmi, V., Tripathi, S., Joshi, S.S., Agrawal, A.: Separation and enrichment of platelets from whole blood using a PDMS-based passive microdevice. Ind. Eng. Chem. Res. 59, 4792–4801 (2020)

    Article  CAS  Google Scholar 

  18. VanDelinder, V., Groisman, A.: Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow. Anal. Chem. 79, 2023–2030 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. Kuan, D.H., Wu, C.C., Su, W.Y., Huang, N.T.: A microfluidic device for simultaneous extraction of plasma, red blood cells, and on-chip white blood cell trapping. Sci. Rep. 8, 1–9 (2018)

    Article  CAS  Google Scholar 

  20. Urbansky, A., Olm, F., Scheding, S., Laurell, T., Lenshof, A.: Label-free separation of leukocyte subpopulations using high throughput multiplex acoustophoresis. Lab Chip 19, 1406–1416 (2019)

    Article  CAS  PubMed  Google Scholar 

  21. Han, K.H., Frazier, A.B.: Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. Lab Chip 6, 265–273 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. Laxmi, V., Joshi, S.S., Agrawal, A.: Design evolution and performance study of a reliable platelet-rich plasma microdevice. Ind. Eng. Chem. Res. 59, 20515–20526 (2020)

    Article  CAS  Google Scholar 

  23. Zhou, J., Papautsky, I.: Size-dependent enrichment of leukocytes from undiluted whole blood using shear-induced diffusion. Lab Chip 19, 3416–3426 (2019)

    Article  CAS  PubMed  Google Scholar 

  24. Jain, A., Munn, L.L.: Biomimetic postcapillary expansions for enhancing rare blood cell separation on a microfluidic chip. Lab Chip 11, 2941–2947 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alvankarian, J., Bahadorimehr, A., Yeop, M.B.: A pillar-based microfilter for isolation of white blood cells on elastomeric substrate. Biomicrofluidics 7, 1–16 (2013)

    Article  CAS  Google Scholar 

  26. Tasadduq, B., Lam, W., Alexeev, A., Sarioglu, A.F., Sulchek, T.: Enhancing size based size separation through vertical focus microfluidics using secondary flow in a ridged microchannel. Sci. Rep. 7, 1–10 (2017)

    Article  CAS  Google Scholar 

  27. Stiles, T., Fallon, R., Vestad, T., Oakey, J., Marr, D.W.M., Squier, J., Jimenez, R.: Hydrodynamic focusing for vacuum-pumped microfluidics. Microfluid Nanofluid 1, 280–283 (2005)

    Article  CAS  Google Scholar 

  28. Tripathi, A., Riddell, J., Chronis, N.: A biochip with a 3D microfluidic architecture for trapping white blood cells. Sens. Actuators B: Chem. 186, 244–251 (2013)

    Article  CAS  Google Scholar 

  29. Sethu, P., Sin, A., Toner, M.: Microfluidic diffusive filter for apheresis (leukapheresis). Lab Chip 6, 83–89 (2006)

    Article  CAS  PubMed  Google Scholar 

  30. Wilding, P., Kricka, L.J., Cheng, J., Hvichia, G., Shoffner, M.A., Fortina, P.: Integrated cell isolation and polymerase chain reaction analysis using silicon microfilter chambers. Anal. Biochem. 257, 95–100 (1998)

    Article  CAS  PubMed  Google Scholar 

  31. Ji, H.M., Victor, S., Yu, C., Heng, C.K., Lim, T.M., Yobas, L.: Silicon-based microfilters for whole blood cell separation. Biomed. Microdevices 10, 251–257 (2008)

    Article  PubMed  Google Scholar 

  32. Civin, C.I., Ward, T., Skelley, A.M., Gandhi, K., Peilun, L.Z., Dosier, C.R., D’Silva, J.L., Chen, Y., Kim, M., Moynihan, J., Chen, X., Aurich, L., Gulnik, S., Brittain, G.C., Recktenwald, D.J., Austin, R.H., Sturm, J.C.: Automated leukocyte processing by microfluidic deterministic lateral displacemen. Int. Soci. Adv. Cytometry 89, 1073–1083 (2016)

    Article  Google Scholar 

  33. Davis, J.A., Inglis, D.W., Morton, K.J., Lawrence, D.A., Huang, L.R., Chou, S.Y., Sturm, J.C., Austin, R.H.: Deterministic hydrodynamics: taking blood apart. Proc. Natl. Acad. Sci. 103, 14779–14784 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim, M., Mo, J.S., Lee, K.H., Kang, Y.J., Yang, S.: A microfluidic device for continuous white blood cell separation and lysis from whole blood. Artif. Organs 34, 996–1002 (2010)

    Article  PubMed  Google Scholar 

  35. Chen, J., Chen, D., Yuan, T., Xie, Y., Chen, X.: Microfluidic chip for direct and rapid trapping of white blood cells from whole blood. Biomicrofluidics 7, 034106 (2013)

    Article  PubMed Central  CAS  Google Scholar 

  36. Cupelli, C., Borchardt, T., Steinct, T., Paust, N., Zengerle, R., Santer, M.: Leukocyte enrichment based on a modified pinched flow fractionation approach. Microfluid. Nanofluidics 14, 551–563 (2013)

    Article  CAS  Google Scholar 

  37. Shevkoplyas, S.S., Yoshida, T., Munn, L.L., Bitensky, M.W.: Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device. Anal. Chem. 77, 933–937 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yamada, M., Seki, M.: Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5, 1233–1239 (2005)

    Article  CAS  PubMed  Google Scholar 

  39. DiCarlo, D., Irimia, D., Tompkins, R.G., Toner, M.: Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. Sci. USA 104, 18892–18897 (2007)

    Article  CAS  Google Scholar 

  40. Price, T.H., Dale, D.C.: Blood kinetics and in vivo chemotaxis of transfused neutrophils: effect of collection method, donor corticosteroid treatment, and short-term storage. Blood 54, 977–986 (1979)

    Article  CAS  PubMed  Google Scholar 

  41. Chiu, P.L., Chang, C.H., Lin, Y.L., Tsou, P.H., Li, B.R.: Rapid and safe isolation of human peripheral blood B and T lymphocytes through spiral microfluidic channels. Sci. Rep. 9, 8145 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wu, L., Guan, G., Hou, H.W., Bhagat, A.A.S., Han, J.: Separation of leukocytes from blood using spiral channel with trapezoid cross-section. Anal. Chem. 84, 9324–9331 (2012)

    Article  CAS  PubMed  Google Scholar 

  43. Lombodorj, B., Tseng, H.C., Chang, H.Y., Lu, Y.W., Tumurpurev, N., Lee, C.W., Ganbat, B., Wu, R.G., Tseng, F.G.: High-throughput white blood cell (leukocyte) enrichment from whole blood using hydrodynamic and inertial forces. Micromachines 11, 1–12 (2020)

    Article  Google Scholar 

  44. Ozbey, A., Karimzadehkhouei, M., Akgonul, S., Gozuacik, D., Kosar, A.: Inertial focusing of microparticles in curvilinear microchannels. Sci. Rep. (2016). https://doi.org/10.1038/srep38809

    Article  PubMed  PubMed Central  Google Scholar 

  45. De Carvalho, W.B.: Hypertonic solution for pediatric patients. J. Pediatr. 79, 187–194 (2003)

    Article  Google Scholar 

  46. Younes, R.N., Birolini, D.: Hypertonic/hyperoncotic solution in hypovolemic patients: experience in the emergency room. Rev. Hosp. Clin. Fac. Med. Sao. Paulo 57, 124–128 (2002)

    Article  PubMed  Google Scholar 

  47. Gorter, E., Grendel, F.: On bimolecular layers of lipids on the chromocytes of the blood. J. Exp. Med. 41, 439–443 (1925)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cooper, G.M.: The cell: a molecular approach, 6th edn. Sinauer, Sunderland (2013)

    Google Scholar 

  49. Jarvela, K., Koskinen, M., Koobi, T.: Effects of hypertonic saline (7.5%) on extracellular fluid volumes in healthy volunteers. Forum Anaesthesia 58, 874–910 (2003)

    Google Scholar 

  50. Han, J., Ren, H.Q., Zhao, Q.B., Wu, Y.L., Qiao, Z.Y.: Comparison of 3% and 7.5% hypertonic saline in resuscitation after traumatic hypovolemic shock. Shock 43, 244–249 (2015)

    Article  CAS  PubMed  Google Scholar 

  51. Carden, M.A., Fay, M.E., Lu, X., Mannino, R.G., Sakurai, Y., Ciciliano, J.C., Hansen, C.E., Chonat, S., Joiner, C.H., Wood, D.K., Lam, W.A.: Extracellular fluid tonicity impacts sickle red blood cell deformability and adhesion. Blood 130, 2654–2663 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mortimer, D.S., Jancik, J.: Administering hypertonic saline to patients with severe traumatic brain injury. J. Neurosci. Nursing 38, 142–146 (2006)

    Article  Google Scholar 

  53. Mark, D.S., Kerryn, M., Hongshen, M.: Assessing the vascular deformability of erythrocytes and leukocytes: from micropipettes to microfluidics. Curr. Futu. Aspects Nanomedicin, Iintechopen (2020)

  54. Baker, R.F.: The fine structure of stromalytic forms produced by osmotic hemolysis of red blood cells. J. Ultrastruct. Res. 11, 494–507 (1964)

    Article  CAS  PubMed  Google Scholar 

  55. Dourmashkin, R.R., Rose, W.F.: Morphologic changes in the membranes of red blood cells undergoing hemolysis. Am. J. Med. 41, 699–710 (1966)

    Article  CAS  PubMed  Google Scholar 

  56. Parichehreh, V., Estrada, R., Kumar, S.S., Bhavanam, K.K., Raj, V., Raj, A., Sethu, P.: Exploiting osmosis for blood cell sorting. Biomed. Microdevices 13, 453–462 (2011)

    Article  PubMed  Google Scholar 

  57. Goodhead, L.K., MacMillan, F.M.: Measuring osmosis and hemolysis of red blood cells. Adv. Physiol. Educ. 41, 298–305 (2017)

    Article  PubMed  Google Scholar 

  58. Tripathi, S., Prabhakar, A., Kumar, N., Singh, S.G., Agrawal, A.: Blood plasma separation in elevated dimension T-shaped microchannel. Biomed. Microdevices 15, 415–425 (2013)

    Article  PubMed  Google Scholar 

  59. Choi, H.S., Kim, J.W., Cha, Y.N., Kim, C.: A quantitative nitroblue tetrazolium assay for determining intracellular superoxide anion production in phagocytic cells. J. Immunoassay Immunochem. 27, 31–44 (2006)

    Article  CAS  PubMed  Google Scholar 

  60. Huang, X., Jeon, H., Liu, J., Yao, J., Wei, M., Han, W., Chen, J., Sun, L., Han, J.: Deep-learning based label-free classification of activated and inactivated neutrophils for rapid immune state monitoring. Sensors (2021)

  61. Tripathi, S., Kumar, Y.V.B.V., Agrawal, A., Prabhakar, A., Joshi, S.S.: Microdevice for plasma separation from whole human blood using bio-physical and geometrical effects. Sci. Rep. (2016). https://doi.org/10.1038/srep26749

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yuxi, S., Palaniappan, S.: Low-stress microfluidic density-gradient centrifugation for blood cell sorting. Biomed. Microdevices 20, 77 (2018)

    Article  Google Scholar 

  63. Low, W.S., Wan, A.W.A.B.: Benchtop technologies for circulating tumor cells separation based on biophysical properties. Biomed. Res. Int. (2015)

  64. Al-Faqheri, W., Thio, T.H.G., Qasaimesh, M.A., Dietzel, A., Madou, M., Al-Halhouli, A.: Particle/cell separation on microfluidic platforms based on centrifugation effect: a review. Microfluid. Nanofluidics 21, 1–23 (2017)

    Article  Google Scholar 

  65. Motaharinia, J., Etezadi, F., Moghaddas, A., Mojtahedzadeh, M.: Immunomodulatory effect of hypertonic saline in hemorrhagic shock. DARU J. Pharm. Sci. 23, 1–8 (2015)

    Article  CAS  Google Scholar 

  66. Ying, Y., Lin, Y.: Inertial focusing and separation of particles in similar curved channels. Sci. Rep. 16575 (2019)

  67. Martel, J.M., Toner, M.: Particle focusing in curved microfluidic channels. Sci. Rep. 3, 3340 (2013)

    Article  Google Scholar 

  68. Martel, J.M., Toner, M.: Inertial focusing in microfluidics. Annu. Rev. Biomed. Eng. 16, 371 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. DiCarlo, D., Edd, J.F., Irimia, D., Tompkins, R.G., Toner, M.: Equilibrium separation and filtration of particles using differential inertial focusing. Anal. Chem. 80, 2204–2211 (2008)

    Article  CAS  Google Scholar 

  70. Tripathi, S., Kumar, A., Kumar, Y.V.B.V., Agrawal, A.: Three-dimensional hydrodynamic flow focusing of dye, particles and cells in a microfluidic device by employing two bends of opposite curvature. Microfluid. Nanofluidics 20, 34 (2016)

    Article  Google Scholar 

  71. Adalgisa, I.M., Giuseppe, A.P., Sebastiao, D.S.F., Severo, D.P., Tania, S.G., Adenilson, S.F., Mario, B.: Osmotic and morphological effects on red blood cell membrane: action of an aqueous extract of Lantana camara. Brazilian J. Pharmacognosy 18, 42–46 (2008)

    Google Scholar 

  72. Hladky, S.B., Rink, T.J.: Osmotic behaviour of human red blood cells: an interpretation in terms of negative intracellular fluid pressure. J. Physiol. 274, 437–446 (1978)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ponder, E.: The relation between red blood cell density and corpuscular hemoglobin concentration. J. Biol. Chem. 144, 333–338 (1942)

    Article  CAS  Google Scholar 

  74. Jain, A., Munn, L.L.: Determinants of leukocyte margination in rectangular microchannels. PLoS ONE 4, 1 (2009)

    Article  Google Scholar 

  75. Mane, S., Hemadri, V., Tripathi, S.: Margination of white blood cells within straight and curved microchannels. ICRAFT2020_3067, 2nd International Conference on Recent Advances in Fluid and Thermal Sciences (ICRAFT), BITS Pilani, Dubai Campus, UAE, March 19-21 (2021)

  76. Boyum, A.: Separation of lymphocytes, lymphocyte subgroups and monocytes: a review. Lymphology 71–76 (1977)

  77. Cossarizza, A. et al.: Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur. J. Immunol 1584–1797 (2017)

  78. Li, X., Li, Y., Shao, W., Li, Z., Zhao, R., Ye, Z.: Trategies for enrichment of circulating tumor cells. Transl. Cancer Res. 2012–2025 (2020)

  79. Roberts, R.L., Yohichiroh, O., Gallin, J.I.: Staining of eosinophils with nitroblue tetrazolium in patients with chronic granulomatous disease. Pediatr. Res. 20, 378–380 (1986)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Mr. Hemeshwar, CNC operator cum technician from BITS-Pilani, K. K. Birla Goa campus, for assisting us in fabrication of the master mold using the micro-milling process. S.T. acknowledges the financial support received under the Additional competitive grant provided by BITS-Pilani, K. K. Birla Goa campus.

Funding

Birla Institute of Technology and Science, Pilani, Additional competitive grant (GOA/ACG/2019-20/Oct/01).

Author information

Authors and Affiliations

Authors

Contributions

SM, VH, and ST designed the research; SM conducted the experiments; SM and ST analyzed and interpreted the data; SM, and ST wrote the manuscript. All the authors reviewed and edited the final manuscript.

Corresponding author

Correspondence to Siddhartha Tripathi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

All the experiments were carried out in accordance with the rules and regulations permitted by the Human ethical committee, Bits-Pilani, KK Birla Goa campus. Blood samples in this study were obtained with written informed consent from all subjects. All blood samples were pretested for any communicable diseases.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13206_2022_74_MOESM1_ESM.docx

Supplementary file1 Includes performance parameters, cell counting and videos. Separation of WBCs using 10% NaCl and 2.8% Hct at a flow rate of 130 µl/min (movie/video 1) and Separation of WBCs using 0.9% NaCl and 2.8% Hct at a flow rate of 130 µl/min (movie/video 2) (DOCX 65 KB)

Supplementary file2 (AVI 7020 KB)

Supplementary file3 (AVI 5212 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mane, S., Hemadri, V. & Tripathi, S. Separation of White Blood Cells in a Wavy Type Microfluidic Device Using Blood Diluted in a Hypertonic Saline Solution. BioChip J 16, 291–304 (2022). https://doi.org/10.1007/s13206-022-00074-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-022-00074-z

Keywords

Navigation