Skip to main content
Log in

NUMERICAL DESIGN STUDY OF CONTINUOUS SEPARATION OF BLOOD CELLS IN A MICROFLUIDIC DEVICE USING COMBINED DIELECTROPHORETIC AND HYDRODYNAMIC FORCES

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A new design for continuous separation of multiple blood cells from diluted whole blood in a microfluidic device based on dielectrophoresis phenomenon is presented. Compared to the other studies, the proposed separator is designed for simultaneous separation of more types of blood cells with desirable accuracy. Using finite-element-based simulations, the device efficiency is evaluated for separation of five blood cell types. The proposed separator uses both dielectrophoretic and hydrodynamic drag forces to separate blood cells. The separator performance under different operating conditions is also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. W. Norde, Colloids and Interfaces in Life Sciences (CRC Press, New York, 2003).

    Book  Google Scholar 

  2. B. Cetin and D. Li, “Dielectrophoresis in Microfluidics Technology," Electrophoresis 32 (18), 2410–2427 (2011).

    Article  Google Scholar 

  3. P. R. Gascoyne and J. Vykoukal, “Particle Separation by Dielectrophoresis," Electrophoresis 23 (13), 1973–1983 (2002).

    Article  Google Scholar 

  4. Y. C. Fung, “Bio-Viscoelastic Solids," in Biomechanics (Springer, New York, 1981, pp. 196–214).

  5. N. Piacentini, G. Mernier, T. Tornay, and P. Renaud, “Separation of Platelets from Other Blood Cells in Continuous-Flow by Dielectrophoresis Field-Flow-Fractionation," Biomicrofluidics 5 (3), 034122 (2011).

    Article  Google Scholar 

  6. H. Ali and C. W. Park, “Numerical Study on the Complete Blood Cell Sorting using Particle Tracing and Dielectrophoresis in a Microfluidic Device," Korea-Australia Rheol. J. 28 (4), 327–339 (2016).

    Article  Google Scholar 

  7. M. Mohammadi, H. Madadi, J. Casals-Terré, and J. Sellarès, “Hydrodynamic and Direct-Current Insulator-Based Dielectrophoresis (H-DC-iDEP) Microfluidic Blood Plasma Separation," Analyt. Bioanalyt. Chem. 407 (16), 4733–4744 (2015).

    Article  Google Scholar 

  8. A. Shamloo and A. Kamali, “Numerical Analysis of a Dielectrophoresis Field-Flow Fractionation Device for the Separation of Multiple Cell Types," J. Separat. Sci. 40 (20), 4067–4075 (2017).

    Article  Google Scholar 

  9. M. S. Pommer, Y. Zhang, N. Keerthi, et al., “Dielectrophoretic Separation of Platelets from Diluted Whole Blood in Microfluidic Channels," Electrophoresis 29 (6), 1213–1218 (2008).

    Article  Google Scholar 

  10. C. Szydzik, K. Khoshmanesh, A. Mitchell, and C. Karnutsch, “Microfluidic Platform for Separation and Extraction of Plasma from Whole Blood using Dielectrophoresis," Biomicrofluidics 9 (6), 064120 (2015).

    Article  Google Scholar 

  11. L. Zhang, F. Tatar, P. Turmezei, et al., “Continuous Electrodeless Dielectrophoretic Separation in a Circular Channel," J. Phys.: Conf. Ser. 34 (1), 527 (2006).

    ADS  Google Scholar 

  12. K. R. Foster, F. A. Sauer, and H. P. Schwan, “Electrorotation and Levitation of Cells and Colloidal Particles," Biophys. J. 63 (1), 180–190 (1992).

    Article  ADS  Google Scholar 

  13. D. Li, Electrokinetics in Microfluidics (Elsevier Academic Press, Burlington, 2004).

    Google Scholar 

  14. J. Yang, Y. Huang, X. Wang, et al., “Dielectric Properties of Human Leukocyte Subpopulations Determined by Electrorotation as a Cell Separation Criterion," Biophys. J. 76 (6), 3307–3314 (1999).

    Article  ADS  Google Scholar 

  15. K. Khoshmanesh, J. Akagi, S. Nahavandi, et al., “Dynamic Analysis of Drug-Induced Cytotoxicity using Chip-Based Dielectrophoretic Cell Immobilization Technology," Anal. Chem. 83 (6), 2133–2144 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Feali.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 63, No. 2, pp. 71-83. https://doi.org/10.15372/PMTF20220207.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahrami, S., Feali, M.S. NUMERICAL DESIGN STUDY OF CONTINUOUS SEPARATION OF BLOOD CELLS IN A MICROFLUIDIC DEVICE USING COMBINED DIELECTROPHORETIC AND HYDRODYNAMIC FORCES. J Appl Mech Tech Phy 63, 240–250 (2022). https://doi.org/10.1134/S0021894422020079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894422020079

Keywords

Navigation