Skip to main content
Log in

Blood plasma separation in elevated dimension T-shaped microchannel

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In recent years, microfluidic chips have proven ideal tools for biochemical analysis, which, however, demands a unique and compatible plasma separation scheme. Various research groups have established continuous flow separation methods in microfluidic devices; however, they have worked with relatively small dimension microchannels (similar to the blood cell diameter). The present work demonstrates separation of plasma by utilizing the hydrodynamic separation techniques in microchannels with size of the order of mm. The separation process exploits the phenomenon, which is very similar to that of plasma skimming explained under Zweifach-Fung bifurcation law. The present experiments demonstrates for, the first time, that applicability of the Zweifach-Fung bifurcation law can be extended to dimensions much higher than the suspended particle size. The T-microchannel device (comprising perpendicularly connected blood and plasma channels) were micro-fabricated using conventional PDMS micro-molding techniques. Three variables (feed hematocrit, main channel width, and flow rate distributions) were identified as the important parameters which define the device’s efficiency for the blood plasma separation. A plasma separation efficiency of 99.7 % was achieved at a high flow ratio. Novel concepts of 2-stage or multiple plasma channel designs are also proposed to yield high separation efficiency with undiluted blood. The possible underlying principle causing plasma separation (viz. aggregation and shear thinning) are investigated in detail as part of this work. The results are significant because they show nearly 100 % separations in microchannels which are much easier to fabricate than previously designed devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • J.H. Barbee, G.R. Cokelet, Microvas. Res. 3, 6–16 (1971)

    Article  Google Scholar 

  • G. Blankensteinand, U.D. Larsen, Biosens Bioelectron 13, 427 (1998)

    Article  Google Scholar 

  • C. Blattert, R. Jurischka, I. Tahhan, A. Schoth, P. Kerth, W. Menz, Conf Proc. IEEE Eng. Med. Biol. Soc. 4, 2627–2630 (2004)

    Google Scholar 

  • E. Brunet, G. Degré, F. Okkels, P. Tabeling, J. Colloid Interf Sci 282, 58–68 (2005)

    Article  Google Scholar 

  • X. Chen, D.F. Cui, C.C. Lui, H. Li, J. Chen, Anal Chem 584, 237–243 (2007)

    Google Scholar 

  • R. Fahraeus, The suspension stability of the blood. Physiol. Rev., vol. ix, (no. 2), 241–274 (1929)

  • R. Fahraeus, T. Lindqvist, Am J Physiol 96, 562–568 (1931)

    Google Scholar 

  • M. Faivre, M. Abkarial, Biorheology 43(2), 147–159 (2006)

    Google Scholar 

  • B.M. Fenton, R.T. Carr, G.R. Cokelet, Microvasc Res 29, 103–126 (1985)

    Article  Google Scholar 

  • Y.C. Fung, Microvasc Res 5, 34–48 (1973)

    Article  Google Scholar 

  • Y.C. Fung, Biomechanics– Mechanical properties of living tissues (Springer – Verlag, New York, 1981)

    Google Scholar 

  • T. Gudipaty, L.S.L. Cheung, L. Jiang, Y. Zohar, Twelfth International Conference on Miniaturized Systems for Chemistry and Life Sciences, October 12 - 16, San Diego, California, USA (2008)

  • J.W. Hong, S.R. Quake, Nat Biotechnol 21, 1179–1183 (2003)

    Article  Google Scholar 

  • D. Huh, J.H. Bahng, Y.B. Ling, H.H. Wei, O.D. Kripfgans, J.B. Fowlkes, J.B. Grotberg, S. Takayama, Anal Chem 79, 1369 (2007)

    Article  Google Scholar 

  • D.W. Inglis, J.A. Davis, R.H. Austin, J.C. Sturm, Lab Chip 6, 655 (2006)

    Article  Google Scholar 

  • R.D. Jaggi, R. Sandoz, C.S. Effenhauser, Microfluid. Nanofluid 3, 47–53 (2007)

    Article  Google Scholar 

  • D. Janasek, J. Franzke, A. Manz, Nature 442, 374–380 (2006)

    Article  Google Scholar 

  • M.K. Kerhoas, D.M. Kavanagh, R.S. Dhariwal, C.J. Campbelland, M.P.Y. Desmulliez, Lab Chip 10, 1587–1595 (2010)

    Article  Google Scholar 

  • J.G. Kralj, M.T.W. Lis, M.A. Schmidt, K.F. Jensen, Anal Chem 78, 5019–5025 (2006)

    Article  Google Scholar 

  • T. Laurell, F. Peterssonand, A. Nilsson, Chem Soc Rev 36, 492 (2007)

    Article  Google Scholar 

  • H.H. Lipowsky, S. Kovalcheck, B.W. Zweifach, Circ Res 43, 738–749 (1978)

    Article  Google Scholar 

  • H.H. Lipowsky, S. Usami, S. Chien, Microvasc Res 19, 297–319 (1980)

    Article  Google Scholar 

  • M.P. MacDonald, G.C. Spalding, K. Dholakia, Nature 426, 421 (2003)

    Article  Google Scholar 

  • A. Manz, J.C.T. Eijkel, Pure Appl. Chem. 73, 1555–1561 (2001)

    Article  Google Scholar 

  • J. Moorthy, D.J. Beebe, Lab Chip 3, 62–66 (2003)

    Article  Google Scholar 

  • N. Pamme, Lab Chip 7, 1644–1659 (2007)

    Article  Google Scholar 

  • C.W. Park, S.H. Shin, G.M. Kim, J.H. Jang, Y.H. Gu, Key Eng. Mater 326–328, 863–866 (2006)

    Article  Google Scholar 

  • A. Prabhakar, S. Mukherji, Lab Chip 10, 748–754 (2010a)

    Article  Google Scholar 

  • A. Prabhakar, S. Mukherji, Lab Chip 10, 3422–3425 (2010b)

    Article  Google Scholar 

  • A.R. Pries, T.W. Secomb, P. Gaehtgens, Cardiovasc Res 32, 654–667 (1996)

    Google Scholar 

  • G.W. Schmid-Schonbein, R. Skalak, S. Usami, S. Chien, Microvasc Res 19, 18–44 (1980)

    Article  Google Scholar 

  • S. Shin, J.X. Houand, J.S. Suh, Korea Aust Rheol J 19(2), 61–66 (2007)

    Google Scholar 

  • E. Sollier, H. Rostaing, P. Pouteau, Y. Fouillet, L. Achard, Sens. Actuators B 141, 617–624 (2009)

    Article  Google Scholar 

  • Y. Sugii, R. Okuda, K. Okamoto, H. Madarame, Meas Sci Technol 16, 1126 (2005)

    Article  Google Scholar 

  • K. Svanes, B.W. Zweifach, Microvasc Res 1, 210–220 (1968)

    Article  Google Scholar 

  • A.I.R. Villarreal, M. Arundell, M. Carmona, J. Samitier, Lab Chip 10, 211–219 (2010)

    Article  Google Scholar 

  • M. Yamada, M. Seki, Lab Chip 5, 1233 (2005)

    Article  Google Scholar 

  • M. Yamada, M. Nakashimaand, M. Seki, Anal Chem 76, 5465–5471 (2004)

    Article  Google Scholar 

  • S. Yang, A. Undar, J.D. Zahn, Lab Chip 6, 871–880 (2006)

    Article  Google Scholar 

  • R.T. Yen, Y.C. Fung, Amer. J. Physiol. 235(2), H251–H257 (1978)

    Google Scholar 

Download references

Acknowledgements

Thanks are due to Professor Ramgopal Rao for suggesting us this problem. The authors also wish to acknowledge CEN, IIT Bombay (supported by the Department of Information Technology, MCIT, Government of India) for fabrication facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Agrawal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathi, S., Prabhakar, A., Kumar, N. et al. Blood plasma separation in elevated dimension T-shaped microchannel. Biomed Microdevices 15, 415–425 (2013). https://doi.org/10.1007/s10544-013-9738-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-013-9738-z

Keywords

Navigation