Skip to main content
Log in

Characterization of inflammatory biomarkers and candidates for diagnosis of Alzheimer’s disease

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common form of neurodegenerative dementia, several genetic, non-genetic, and environmental factors could be involved in disease progression. Association was suggested between inflammation and AD progression. Since neuroinflammation can be involved in neurodegeneration, studies suggested that several inflammatory molecules (cytokines) might enhance the inflammation or suppress the immune system. Altered cytokine levels might reflect the neuropathological changes in patients. This review summarizes the validated and potential inflammatory biomarkers in AD, and it is focusing on interleukins (ILs), interferons (IFNs) and tumor necrosis factors (TNFs). Interleukins have dual role in the AD progression: Several ILs (such as IL1, IL6 or IL8) can promote the disease-associated inflammatory pathways, while the others (such as IL1ra, IL4 or IL10) might be involved in the neuroprotection and dementia prevention. Conflicting reports are available on the role of IFNs (IFNα, IFNβ and IFNγ) in AD progression. Several studies reported that they might have neuroprotective effects, but the others suggested that they can contribute to neurotoxiciy by inducing the pro-inflammatory cytokines. TNFα can be expressed with other pro-inflammatory cytokines and induce the neurodegeneration. Both TNFα and TNFR were suggested as successful markers for AD and dementia. Several cytokines can be used to distinguish the AD patients from the healthy individuals, since their expression might be up-or down-regulated in the brain of AD patients. Some cytokines might be useful to measure the severity of the disorder. Overproduction of pro-inflammatory molecules could result neuroinflammation and enhance the neurotoxicity. Inhibiting the pro-inflammatory- and/ or inducing the anti-inflammatory molecules might improve the therapies for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frank R.A. et al. Biological markers for therapeutic trials in Alzheimer’s disease: Proceedings of the biological markers working group; NIA initiative on neuroimaging in Alzheimer’s disease. Neurobiol. Aging 24, 521–536 (2003).

    Article  Google Scholar 

  2. Casoli T. et al. Peripheral inflammatory biomarkers of Alzheimer’s disease: the role of platelets. Biogerontology 11, 627–633 (2011).

    Article  Google Scholar 

  3. Mrak R.E. Neuropathology and the neuroinflammation idea. J. Alzhemers. Dis. 18, 473–481 (2009).

    Google Scholar 

  4. McNaull B.B., Todd S., McGuinness B. & Passmore A.P. Inflammation and anti-inflammatory strategies for Alzheimer’s disease — a mini-review. Gerontology 56, 3–14 (2010).

    Article  CAS  Google Scholar 

  5. Elenkov I.J., Wilder R.L., Chrousos G.P. & Vizi S. The sympathetic nerve - an integrative interface between two supersystems: the brain and the immnune system. Pharmacol. Rev. 52, 595–638 (2000).

    CAS  Google Scholar 

  6. Lee M. Neurotransmitters and microglial-mediated neuroinflammation. Curr. Protein Pept. Sci. 14, 21–32 (2013).

    Article  CAS  Google Scholar 

  7. Szelényi J. Cytokines and the central nervous system. Brain. Res. Bull. 54, 329–338 (2001).

    Article  Google Scholar 

  8. Reyes-García M.G. & García-Tamayo F. A neurotransmitter system that regulates macrophage pro-inflammatory functions. J. Neuroimmunol. 216, 20–31 (2009).

    Article  Google Scholar 

  9. Ramberg V., Tracy L.M., Samuelsson M., Nilsson L.N. & Iverfeldt K. The CCAAT/enhancer binding protein (C/EBP) δ is differently regulated by fibrillar and oligomeric forms of the Alzheimer amyloid-β peptide. J. Neuroinflammation. 8, 14 (2011).

    Article  Google Scholar 

  10. Weisman D., Hakimian E. & Ho G.J. Interleukins, inflammation, and mechanisms of Alzheimer’s disease. Vitam. Horm. 74, 505–530 (2006).

    Article  CAS  Google Scholar 

  11. Maedler K., Dharmadhikari G., Schumann D.M. & Størling J. Interleukin-targeted therapy for metabolic syndrome and type 2 diabetes. Handb. Exp. Pharmacol. 2011, 257–278 (2011).

    Article  Google Scholar 

  12. Solomon S. et al. Sustained hippocampal IL-1β overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J. Clin. Invest. 117, 1595–1604 (2007).

    Article  Google Scholar 

  13. Parajuli B. et al. Oligomeric amyloid β induces IL-1β processing via production of ROS: implication in Alzheimer’s disease. Cell Death Dis. 4, 975 (2013).

    Article  Google Scholar 

  14. Luheshi N.M., McColl B.W. & Brough D. Nuclear retention of IL-1 alpha by necrotic cells: a mechanism to dampen sterile inflammation. Eur. J. Immunol. 39, 2973–2980 (2009).

    Article  CAS  Google Scholar 

  15. Schuitemaker A. et al. Inflammatory markers in AD and MCI patients with different biomarker profiles. Neurobiol. Aging 30, 1885–1889 (2009).

    Article  CAS  Google Scholar 

  16. Helmy A.A., Naseer M.M., Shafie S.E. & Nada M.A. Role of interleukin 6 and alpha-globulins in differentiating Alzheimer and vascular dementias. Neurodegener. Dis. 9, 81–86 (2012).

    Article  CAS  Google Scholar 

  17. Hampel H. et al. Pattern of interleukin-6 receptor complex immunoreactivity between cortical regions of rapid autopsy normal and Alzheimer’s disease brain. Eur. Arch. Psychiatry. Clin. Neurosci. 255, 269–278 (2006).

    Article  Google Scholar 

  18. Quintanilla R.A., Orellana D.I., González-Billault C. & Maccioni R.B. Interleukin-6 induces Alzheimertype phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp. Cell Res. 295, 245–257 (2004).

    Article  CAS  Google Scholar 

  19. Kaplin A. et al. IL-6 release by LPS-stimulated peripheral blood mononuclear cells as a potential biomarker in Alzheimer’s disease. Int. Psychogeriatr. 21, 413–414 (2009).

    Article  Google Scholar 

  20. Alsadany M.A., Shehata H.H., Mohamad M.I. & Mahfouz R.G. Histone deacetylases enzyme, copper, and IL-8 levels in patients with Alzheimer’s disease. Am. J. Alzheimers. Dis. Other. Demen. 28, 54–61 (2013).

    Article  Google Scholar 

  21. Kim S.M. et al. Identification of peripheral inflammatory markers between normal control and Alzheimer’s disease. BMC Neurol. 11, 51 (2011).

    Article  CAS  Google Scholar 

  22. Franciosi S., Choi H.B., Kim S.U. & McLarnon J.G. IL-8 enhancement of amyloid-beta (Abeta 1-42)-induced expression and production of pro-inflammatory cytokines and COX-2 in cultured human microglia. J. Neuroimmunol. 159, 66–74 (2005).

    Article  CAS  Google Scholar 

  23. Cruikshank W.W., Kornfeld H. & Center D.M. Signaling and functional properties of interleukin-16. Int. Rev. Immunol. 16, 523–540 (1998).

    Article  CAS  Google Scholar 

  24. Di Rosa M. et al. Chitotriosidase and inflammatory mediator levels in Alzheimer’s disease and cerebrovascular dementia. Eur. J. Neurosci. 23, 2648–2656 (2006).

    Article  Google Scholar 

  25. Dinarello C.A. Interleukin-18. Methods 19, 121–132 (1999).

    Article  CAS  Google Scholar 

  26. Malaguarnera L., Motta M., Di Rosa M., Anzaldi M. & Malaguarnera M. Interleukin-18 and transforming growth factor-beta 1 plasma levels in Alzheimer’s disease and vascular dementia. Neuropathology 26, 307–312 (2006).

    Article  Google Scholar 

  27. Sutinen E.M., Pirttilä T., Anderson G., Salminen A. & Ojala J.O. Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-β production in human neuron-like cells. J. Neuroinflammation 9, 199 (2012).

    Article  CAS  Google Scholar 

  28. Tarkowski E., Liljeroth A.M., Nilsson A., Minthon L. & Blennow K. Decreased levels of intrathecal interleukin 1 receptor antagonist in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 12, 314–317 (2001).

    Article  CAS  Google Scholar 

  29. Kiyota T. et al. CNS expression of anti-inflammatory cytokine interleukin-4 attenuates Alzheimer’s diseaselike pathogenesis in APP+PS1 bigenic mice. FASEB J. 24, 3093–3102 (2010).

    Article  CAS  Google Scholar 

  30. Shimizu E., Kawahara K., Kajizono M., Sawada M. & Nakayama H. IL-4-induced selective clearance of oligomeric beta-amyloid peptide(1-42) by rat primary type 2 microglia. J. Immunol. 181, 6503–6513 (2008).

    Article  CAS  Google Scholar 

  31. Magaki S., Mueller C., Dickson C. & Kirsch W. Increased production of inflammatory cytokines in mild cognitive impairment. Exp. Gerontol. 42, 233–240 (2007).

    Article  CAS  Google Scholar 

  32. Wang T. et al. The efficacy of plasma biomarkers in early diagnosis of Alzheimer’s disease. Int. J. Geriatr. Psychiatry 29, 713–719 (2014).

    Article  Google Scholar 

  33. Angelopoulos P. et al. Cytokines in Alzheimer’s disease and vascular dementia. Int. J. Neurosci. 118, 1659–1672 (2008).

    Article  CAS  Google Scholar 

  34. Martinez-Nunez R.T., Louafi F. & Sanchez-Elsner T. The interleukin 13(IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1). J. Biol. Chem. 286, 1786–1794 (2011).

    Article  CAS  Google Scholar 

  35. Szczepanik A.M., Funes S., Petko W. & Ringheim G.E. IL-4, IL-10 and IL-13 modulate A beta(1—42)- induced cytokine and chemokine production in primary murine microglia and a human monocyte cell line. J. Neuroimmunol. 113, 49–62 (2001).

    Article  CAS  Google Scholar 

  36. Taylor J.M. et al. Type-1 interferon signaling mediates neuro-inflammatory events in models of Alzheimer’s disease. Neurobiol. Aging 35, 1012–1023 (2014).

    Article  CAS  Google Scholar 

  37. Le Page C., Génin P., Baines M.G. & Hiscott J. Interferon activation and innate immunity. Rev. Immunogenet. 2, 374–386 (2000).

    Google Scholar 

  38. Sas A.R., Bimonte-Nelson H., Smothers C.T., Woodward J. & Tyor, W.R. Interferon-alpha causes neuronal dysfunction in encephalitis. J. Neurosci. 29, 3948–3955 (2009).

    Article  CAS  Google Scholar 

  39. Chakrabarty P. et al. IFN-gamma promotes complement expression and attenuates amyloid plaque deposition in amyloid beta precursor protein transgenic mice. J. Immunol. 184, 5333–5343 (2010).

    Article  CAS  Google Scholar 

  40. Baron R. et al. IFN-gamma enhances neurogenesis in wild-type mice and in a mouse model of Alzheimer’s disease. FASEB J. 22, 2843–2852 (2008).

    Article  CAS  Google Scholar 

  41. Zheng M. et al. Intrahippocampal injection of Aβ1-42 inhibits neurogenesis and down-regulates IFN-γ and NF-kB expression in hippocampus of adult mouse brain. Amyloid 20, 13–20 (2013).

    Article  Google Scholar 

  42. Lynch M.A. The impact of neuroimmune changes on development of amyloid pathology; relevance to Alzheimer’s disease. Immunology 141, 292–301 (2014).

    Article  CAS  Google Scholar 

  43. Tobinick E. Tumour necrosis factor modulation for treatment of Alzheimer’s disease: rationale and current evidence. CNS Drugs 23, 713–725 (2009).

    Article  CAS  Google Scholar 

  44. Rojo L.E., Fernández J.A., Maccioni A.A., Jimenez J.M. & Maccioni R.B. Neuroinflammation: implications for the pathogenesis and molecular diagnosis of Alzheimer’s disease. Arch. Med. Res. 39, 1–16 (2008).

    Article  CAS  Google Scholar 

  45. Zhang J., Peng M. & Jia J. Plasma Amyloid-β Oligomers and Soluble Tumor Necrosis Factor Receptors as Potential Biomarkers of AD. Curr Alzheimer Res. 11, 325–331 (2014).

    Article  CAS  Google Scholar 

  46. Cheng X., Yang L., He P., Li R. & Shen Y. Differential Activation of Tumor Necrosis Factor Receptors Distinguishes between Brains from Alzheimer’s Disease and Non-Demented Patients. J. Alzheimers. Dis. 19, 621–630 (2010).

    CAS  Google Scholar 

  47. Buchhave P. et al. Soluble TNF receptors are associated with Aβ metabolism and conversion to dementia in subjects with mild cognitive impairment. Neurobiol. Aging 31, 1877–1884 (2010).

    Article  CAS  Google Scholar 

  48. Tan Z.S. & Seshadri S. Inflammation in the Alzheimer’s disease cascade: culprit or innocent bystander? Alzheimers Res. Ther. 2, 6 (2010).

    Article  Google Scholar 

  49. Enciu A.M. & Popescu B.O. Is there a causal link between inflammation and dementia? Biomed. Res. Int. 2013, 316495 (2013).

    Article  Google Scholar 

  50. Lee Y.J. et al. Inflammation and Alzheimer’s disease. Arch. Pharm. Res. 33, 1539–1556 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Soo A. An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagyinszky, E., Youn, Y.C., An, S.S.A. et al. Characterization of inflammatory biomarkers and candidates for diagnosis of Alzheimer’s disease. BioChip J 8, 155–162 (2014). https://doi.org/10.1007/s13206-014-8301-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-014-8301-1

Keywords

Navigation