Skip to main content

Advertisement

Log in

Nutraceuticals and phytotherapeutics for holistic management of amyotrophic lateral sclerosis

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis” (ALS) is a progressive neuronal disorder that affects sensory neurons in the brain and spinal cord, causing loss of muscle control. Moreover, additional neuronal subgroups as well as glial cells such as microglia, astrocytes, and oligodendrocytes are also thought to play a role in the aetiology. The disease affects upper motor neurons and lowers motor neurons and leads to that either lead to muscle weakness and wasting in the arms, legs, trunk and periventricular area. Oxidative stress, excitotoxicity, programmed cell death, altered neurofilament activity, anomalies in neurotransmission, abnormal protein processing and deterioration, increased inflammation, and mitochondrial dysfunction may all play a role in the progression of ALS. There are presently hardly FDA-approved drugs used to treat ALS, and they are only beneficial in slowing the progression of the disease and enhancing functions in certain individuals with ALS, not really in curing or preventing the illness. These days, researchers focus on understanding the pathogenesis of the disease by targeting several mechanisms aiming to develop successful treatments for ALS. This review discusses the epidemiology, risk factors, diagnosis, clinical features, pathophysiology, and disease management. The compilation focuses on alternative methods for the management of symptoms of ALS with nutraceuticals and phytotherapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article.

Abbreviations

ALS:

Amyotropic lateral sclerosis

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

BBR:

Berberine

ChAT:

Choline acetyltransferase

CK:

Creatinkinase

CNS:

Central nervous system

CSA:

Chinese scalp acupuncture

DATS:

Diallyl trisulfide

DNA:

Deoxy ribonucleic acid

EGCG:

Epigallocatechin gallate

EMG:

Electromyography studies

FDA:

Food and drug administration

FVC:

Forced vital capacity

HupA:

Huperzine A

IBM:

Inclusion body myositis, S

Lf:

Lactoferrin

LMN:

Lower motor neurons

LPS:

Lipopolysaccharide

MEP:

Motor evoked potentials

MN:

Spinal motoneuron,

MND:

Motor Neuron Disease

MPP:

1-Methyl-4-phenylpyridinium

MRI:

Magnetic resonance imaging

MSC:

Mesenchymal stromal cells

NAD:

Nicotinamide adenine dinucleotide

ND:

Neurodegenerative disease

NGF:

Nerve growth factor

NLRP3:

NOD-like receptor pyrin domain-containing-3

NMDA:

N-Methyl-D-aspartate

NR:

Nicotinamide riboside

PM:

Polymyositis

PT:

Pterostilbene

RBP:

RNA binding protein

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TMC:

N-Trimethylated chitosan

UMN:

Upper motor neurons

US:

United States

WFA:

Withaferin A

References

  • Ahmed T, Gilani AU, Abdollahi M, Daglia M, Nabavi SF, Nabavi SM (2015) Berberine and neurodegeneration: a review of literature. Pharmacol Rep 67:970–979

    Article  CAS  PubMed  Google Scholar 

  • Amporndanai K, Rogers M, Watanabe S, Yamanaka K, O’Neill PM, Hasnain SS (2020) Novel Selenium-based compounds with therapeutic potential for SOD1-linked amyotrophic lateral sclerosis. eBioMed 59:102980

    Article  CAS  Google Scholar 

  • Amtmann D, Weydt P, Johnson KL, Jensen MP, Carter GT (2004) Survey of cannabis use in patients with amyotrophic lateral sclerosis. Am J Hosp Palliat Care 21(2):95–104

    Article  PubMed  Google Scholar 

  • Andreassen OA, Dedeoglu A, Friedlich A, Ferrante KL, Hughes D, Szabo C, Beal MF (2001a) Effects of an inhibitor of poly(ADP-ribose) polymerase, desmethylselegiline, trientine, and lipoic acid in transgenic ALS mice. Exp Neurol 168(2):419–424

    Article  CAS  PubMed  Google Scholar 

  • Andreassen OA, Jenkins BG, Dedeoglu A, Ferrante KL, Kaddurah-Daouk BMB (2001b) Increases in cortical glutamate concentrations in transgenic amyotrophic lateral sclerosis mice are attenuated by creatine supplementation. J Neurochem 77(2):383–390

    Article  CAS  PubMed  Google Scholar 

  • Andrew AS, Caller TA, Tandan R, Duell EJ, Henegan PL, Field N, Bradley WG, Stommel EW (2017) Environmental and occupational exposures and amyotrophic lateral sclerosis (ALS) in New England. Neurodegener Dis 17(2–3):110–116. https://doi.org/10.1159/000453359

    Article  PubMed  Google Scholar 

  • Andrew AS, Bradley WG, Peipert D, Butt TB, Amoako K, Pioro EP, Tandan R, Novak J, Quick A, Pugar KD, Sawlani K, Katirji B, Hayes TA, Cazzolli P, Gui J, Mehta P, Horton DK, Stommel EW (2021) Risk factors for amyotrophic lateral sclerosis: a regional United States case-control study. Muscle Nerve 63:52–59. https://doi.org/10.1002/mus.27085

    Article  PubMed  Google Scholar 

  • Asl RS, Shariatmadari F, Sharafi M, Torshizi MAK, Shahverdi A (2018) Dietary fish oil supplemented with vitamin E improves quality indica- tors of rooster cold-stored semen through reducing lipid peroxidation. Cryobiol 84:15–19

    Article  Google Scholar 

  • Babu GN, Kumar A, Chandra R, Puri SK, Singh RL, Kalita J, Misra UK (2008) Oxidant–antioxidant imbalance in the erythrocytes of sporadic amyotrophic lateral sclerosis patients correlates with the progression of disease. Neurochem Internat 52(6):1284–1289

    Article  CAS  Google Scholar 

  • Bagheri H, Ghasemi F, Barreto GE, Rafiee R, Sathyapalan T, Sahebkar A (2020) Effects of curcumin on mitochondria in neurodegenerative diseases. BioFactors 46(1):5–20

    Article  CAS  PubMed  Google Scholar 

  • Baj T, Seth R (2018) Role of curcumin in regulation of TNF-α mediated brain inflammatory responses. Recent Pat Inflammallergy Drug Discov 12(1):69–77

    Article  CAS  Google Scholar 

  • Bankole O, Scambi I, Parrella E, Muccilli M, Bonafede R, Turano E, Pizzi M, Mariotti R (2022) Beneficial and dimorphic response to combined HDAC inhibitor valproate and AMPK/SIRT1 pathway activator resveratrol in the treatment of ALS mice. Int J Mol Sci 23(3):1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beal MF (1999) Coenzyme Q10 administration and its potential for treatment of neurodegenerative diseases. BioFactors 9:261–266

    Article  CAS  PubMed  Google Scholar 

  • Beal MF (2002) Coenzyme Q10 as a possible treatment for neurodegenerative diseases. Free Rad Res 36:455–460

    Article  Google Scholar 

  • Beghi E, Pupillo E, Bonito V, Buzzi P, Caponnetto C, Chiò A, Corbo M, Giannini F, Inghilleri M, Bella VL, Logroscino G (2013) Randomized double-blind placebo-controlled trial of acetyl-L-carnitine for ALS. Amyotroph Lateral Scler Frontotemporal Degener 14(5–6):397–405

    Article  CAS  PubMed  Google Scholar 

  • Bonafede R, Mariotti R (2017) ALS pathogenesis and therapeutic approaches: the role of mesenchymal stem cells and extracellular vesicles. Front Cell Neurosci 11:80. https://doi.org/10.3389/fncel.2017.00080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borchelt DR (2021) Building a case for withaferin a as a treatment for FTD/ALS syndromes. Neurotherapeutics 18(1):284–285

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai M, Choi SM, Yang EJ (2015) The effects of bee venom acupuncture on the central nervous system and muscle in an animal hSOD1G93A mutant. Toxins 7(3):846–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Liu JW, Yu YJ et al (2007) Synergistic protective effect of picroside II and NGF on PC12 cells against oxidative stress induced by H2O2. Pharmacol Rep 59:573–579

    PubMed  Google Scholar 

  • Carta A, Calvani M, Bravi D, Bhuachalla SN (1993) Acetyl-L-carnitine and Alzheimer’s disease: pharmacological considerations beyond the cholinergicsphere. Ann NY Acad Sci 695:324–326

    Article  CAS  PubMed  Google Scholar 

  • Carter GT, Abood ME, Aggarwal SK, Weiss MD (2010) Cannabis and amyotrophic lateral sclerosis: hypothetical and practical applications, and a call for clinical trials. Am J Hosp Palliat Care 27(5):347–356

    Article  PubMed  Google Scholar 

  • Chang CF, Lee YC, Lee KH, Lin HC, Chen CL, Shen CK, Huang CC (2016) Therapeutic effect of berberine on TDP-43-related pathogenesis in FTLD and ALS. J Biomed Sci 23(1):1–2

    Article  CAS  Google Scholar 

  • Chapel A, Bertho JM, Bensidhoum M, Fouillard L, Young RG, Frick J, Demarquay C, Cuvelier F, Mathieu E, Trompier F, Dudoignon N (2003) Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J Gene Med 5(12):1028–1038

    Article  PubMed  Google Scholar 

  • Chen WD, Lu XL, Li L et al (2000) Effect of gastrodin on release of glutamate from cultured nerve cells induced by potassium chloride. Chin J Nat Med 2:8–10

    Google Scholar 

  • Chen YZ, Fang YQ, Liang Y et al (2007) Protective effects of b-asarone on PC12 cells damage induced by glutamate. Chin J Inform Trad Chin Med 14:22–23

    Google Scholar 

  • Chico L, Ienco EC, Bisordi C, Lo Gerfo A, Petrozzi L, Petrucci A, Mancuso M, Siciliano G (2018) Amyotrophic lateral sclerosis and oxidative stress: a double-blind therapeutic trial after curcumin supplementation. CNS Neurol Disord Drug Targets 17(10):767–779

    Article  CAS  PubMed  Google Scholar 

  • Chili A, Cucatto A, Terreni AA, Schiffer D (1998) Reduced glutathione in amyotrophic lateral sclerosis: an open, crossover, randomized trial. Ital J Neurol Sci 19(6):363–366

    Article  Google Scholar 

  • Cho IH (2012) Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 36(4):342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Carvalho M (2020) Electrodiagnosis of amyotrophic lateral sclerosis: a review of existing guidelines. J Clin Neurophysiol 37:294–298

    Article  PubMed  Google Scholar 

  • De Angelis C, Scarfo C, Falcinelli M, Perna E, Ramacci MT, Angelucci L (1995) Age- and trauma-dependent modifications of neuromuscular junction and skeletal muscle structure in the rat. Effects of long-term treatment with acetyl-L-carnitine. Mech Ageing Dev 85(1):37–53

    Article  PubMed  Google Scholar 

  • De Girolamo L, Lucarelli E, Alessandri G, AvanziniMA BME, Biagi E, Brini AT, D’Amico G, Fagiolo F, Ferrero I, Locatelli F, Maccario R, Marazzi M, Parolini O, Pessina A, Torre ML (2013) Mesenchymal stem/stromal cells: a new’’cells as drugs’’paradigm. Efficacy and critical aspects in cell therapy. Curr Pharm Des 19(13):2459–2473

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Wang N, Zhu Q et al (2008) Neuroprotective effects of ferulic acid against glutamate-induced neurotoxicity in PC12 cells. Pharmacol Clin Chin Mater Med 24:32–34

    CAS  Google Scholar 

  • Dhasmana S, Dhasmana A, Narula AS, Jaggi M, Yallapu MM, Chauhan SC (2022) The Panoramic view of amyotrophic lateral sclerosis: a fatal intricate neurological disorder. Life Sci 288:120156

    Article  CAS  PubMed  Google Scholar 

  • Doble A (1996) The pharmacology and mechanism of action of riluzole. Neurology 47(6 Suppl 4):233S-S241

    Article  Google Scholar 

  • Dong H, Xu L, Wu L, Wang X, Duan W, Li H, Li C (2014) Curcumin abolishes mutant TDP-43 induced excitability in a motoneuron-like cellular model of ALS. Neurosci 272:141–153. https://doi.org/10.1016/j.neuroscience.2014.04.032

    Article  CAS  Google Scholar 

  • Durairajan SS, Liu LF, Lu JH, Chen LL, Yuan Q, Chung SK, Huang L, Li XS, Huang JD, Li M (2012) Berberine ameliorates betaamyloid pathology, gliosis, and cognitive impairment in an Alzheimer’s disease transgenic mouse model. Neurobiol Aging 33:2903–2919

    Article  CAS  PubMed  Google Scholar 

  • Ernst E (2002) The risk-benefit profile of commonly used herbal therapies: ginkgo, St John’s wort, ginseng, echinacea, saw palmetto, and kava. Ann Intern Med 136:42–53

    Article  PubMed  Google Scholar 

  • Esposito E, Capasso M, di Tomasso N, Corona C, Pellegrini F, Uncini A, Vitaglione P, Fogliano V, Piantelli M, Sensi SL (2007) Antioxidant strategies based on tomato-enriched food or pyruvate do not affect disease onset and survival in an animal model of amyotrophic lateral sclerosis. Brain Res 1168:90–96

    Article  CAS  PubMed  Google Scholar 

  • Exner R, Wessner B, Manhart N, Roth E (2000) Therapeutic potential of glutathione. Wien KlinWochenschr 112(14):610–616

    CAS  Google Scholar 

  • Fan X, Wang J, Hou J, Lin C, Bensoussan A, Chang D, Liu J, Wang B (2015) Berberine alleviates ox-LDL induced inflammatory factors by up-regulation of autophagy via AMPK/mTOR signaling pathway. J Transl Med 13:92

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng X, Peng Y, Liu M, Cui L (2012) DL-3-n-butylphthalide extends survival by attenuating glial activation in a mouse model of amyotrophic lateral sclerosis. Neuropharmacol 62(2):1004–1010

    Article  CAS  Google Scholar 

  • Ferrante RJ, Klein AM, Dedeoglu A, Beal MF (2001) Therapeutic efficacy of EGb761 (Gingko biloba extract) in a transgenic mouse model of amyotrophic lateral sclerosis. J Mol Neurosci 17(1):89–96

    Article  CAS  PubMed  Google Scholar 

  • Fontanilla CV, Wei X, Zhao L, Johnstone B, Pascuzzi RM, Du FMR (2012) Caffeic acid phenethyl ester extends survival of a mouse model of amyotrophic lateral sclerosis. Neurosc 205:185–193

    Article  CAS  Google Scholar 

  • Fosslien E (2001) Mitochondrial medicine-molecular pathology of defective oxidative phosphorylation. Ann Clin Lab Sci 31(1):25–67

    CAS  PubMed  Google Scholar 

  • Foster LH, Sumar S (1997) Selenium in health and disease: a review. Crit Rev Food Sci Nutr 37:211–228

    Article  CAS  PubMed  Google Scholar 

  • Fujimori K et al (2018) Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent. Nat Med 24:1579–1589

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi F, Bagheri H, Barreto GE, Read MI, Sahebkar A (2019) Effects of curcumin on microgial cells. Neurotox Res 36:12–26. https://doi.org/10.1007/s12640-019-00030-0

    Article  CAS  PubMed  Google Scholar 

  • Guo Q, Li YK, Wang ZG et al (2009) Advances in pharmacology of paeonol. Inf Trad Chin Med 26:20–22

    Google Scholar 

  • Guo Y, Zhang K, Wang Q, Li Z, Yin Y, Xu Q, Duan W, Li C (2011) Neuroprotective effects of diallyl trisulfide in SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis. Brain Res 1374:110–115

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  CAS  PubMed  Google Scholar 

  • Hemendinger RA, Armstrong EJ, Persinski R, Todd J, Mougeot JL, Volvovitz F, Rosenfeld J (2008) Huperzine a provides neuroprotection against several cell death inducers usingin vitro model systems of motor neuron cell death. Neurotox Res 13(1):49–61

    Article  CAS  PubMed  Google Scholar 

  • Hideo T, Takashi A, Mika S (1996) Alpha-tocopherol quinone level is remarkably low in the cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis. Neurosci Lett 207(1):5–8

    Article  Google Scholar 

  • Hong M, Kang MJ, Pak S, Han IH, Bae H (2022) Bee venom phospholipase A2 ameliorates amyotrophic lateral sclerosis by increasing regulatory T cell population. Adv Trad Med 20:1–8

    Google Scholar 

  • Huebers A, Just W, Rosenbohm A, Mueller K, Marroquin N, Goebel I, Hoegel J, Thiele H, Altmueller J, Nuernberg P, Weishaupt JH (2015) De novo FUS mutations are the most frequent genetic cause in early-onset German ALS patients. Neurobiol Aging 36(11):3117-e1

    Google Scholar 

  • Imamura K et al (2017) The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis. Sci Transl Med 9:3962

    Article  Google Scholar 

  • Imosemi IO (2021) A review of the importance of glutathione in neurodegenerative diseases. Ejpmr 8(6):61–71

    Google Scholar 

  • Ingre C, Roos PM, Piehl F, Kamel F, Fang F (2015) Risk factors for amyotrophic lateral sclerosis. Clinical Epidemiol 7:181–193. https://doi.org/10.2147/CLEP.S37505

    Article  Google Scholar 

  • Isonaka R, Hiruma H, Katakura T, Kawakami T (2011) Inhibition of superoxide dismutase selectively suppresses growth of rat spinal motor neurons: comparison with phosphorylated neurofilament-containing spinal neurons. Brain Res 1425:13–19

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, DeSilva S, Turnbull J (2000) Beneficial effect of ginseng root in SOD-1 (G93A) transgenic mice. J Neurol Sci 180:52–54

    Article  CAS  PubMed  Google Scholar 

  • Jiang B, Liu JH, Bao YM et al (2004) Catalpol inhibits apoptosis in hydrogen peroxide-induced PC12 cells by preventing cytochrome c release and inactivating of caspase cascade. Toxicon 43:53–59

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Tian X, Guo Y, Duan W, Bu H, Li C (2011a) Activation of nuclear factor erythroid 2-related factor 2 cytoprotective signaling by curcumin protect primary spinal cord astrocytes against oxidative toxicity. Biol Pharm Bull 34:1194–1197

    Article  CAS  PubMed  Google Scholar 

  • Jiang JH, Yang EJ, Baek MG, Kim SH, Lee SM, Choi SM (2011b) Anti-inflammatory effects of electroacupuncture in the respiratory system of a symptomatic amyotrophic lateral sclerosis animal model. Neurodegener Dis 8(6):504–14

    Article  PubMed  Google Scholar 

  • Jiang G, Hu Y, Liu L, Cai J, Peng C, Li Q (2014) Gastrodin protects against MPP(+)-induced oxidative stress by up regulates heme oxygenase-1 expression through p38 MAPK/Nrf2 pathway in human dopaminergic cells. Neurochem Internat 75:79–88. https://doi.org/10.1016/j.neuint.2014.06.003

    Article  CAS  Google Scholar 

  • Jin Y, Yan EZ, Fan Y et al (2007) Neuroprotection by sodium ferulate against glutamate-induced apoptosis is mediated by ERK and PI3 kinase pathways. Acta Pharmacol Sin 28:1881–1890

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Oh K, Oh SI, Baek H, Kim SH, Park Y (2014) Dietary intake of fruits and beta-carotene is negatively associated with amyotrophic lateral sclerosis risk in Koreans: a case–control study. Nut Neurosci 17(3):104–108

    Article  CAS  Google Scholar 

  • Johnston CA, Stanton BR, Turner MR et al (2006) Amyotrophic lateral sclerosis in an urban setting: a population based study of inner city London. J Neurol 253:1642–3

    Article  PubMed  Google Scholar 

  • Jung HW, Chung YS, Kim YS et al (2007) Celastrol inhibits production of nitric oxide and proinflammatory cytokines through MAPK signal transduction and NF-kappaB in LPS stimulated BV-2 microglial cells. Exp Mol Med 39:715–721

    Article  CAS  PubMed  Google Scholar 

  • Jung HA, Jin SE, Choi RJ, Kim DH, Kim YS, Ryu JH, Kim DW, Son YK, Park JJ, Choi JS (2010) Anti-amnesic activity of neferine with antioxidant and anti-inflammatory capacities, as well as inhibition of ChEs and BACE1. Life Sci 87:420–430

    Article  CAS  PubMed  Google Scholar 

  • Kanekura K, Hashimoto Y, Kita Y et al (2005) A Rac1/ phosphatidylinositol 3-kinase/Akt3 anti-apoptotic pathway, triggered by AlsinLF, the product of the ALS2 gene, antagonizes Cu/Zn-superoxide dismutase (SOD1) mutant-induced motoneuronal cell death. J Biol Chem 280:4532–4543

    Article  CAS  PubMed  Google Scholar 

  • Kato H, Sato H, Okuda M, Wu J, Koyama S, Izumi Y, Waku T, Iino M, Aoki M, Arawaka S, Ohta Y (2021) Therapeutic effect of a novel curcumin derivative GT863 on a mouse model of amyotrophic lateral sclerosis. Amyotrophic Lateral Scler. Frontotempdegener 2:1–7

    Google Scholar 

  • Khan MM, Kempuraj D, Thangavel R, Zaheer A (2013) Protection of MPTP-induced neuroinflammation and neurodegeneration by Pycnogenol. Neurochem Int 62(4):379–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiaei M, Kipiani K, Petri S et al (2005) Celastrol blocks neuronal cell death and extends life in transgenic mouse model of amyotrophic lateral sclerosis. Neurodegen Dis 2:24–54

    Article  Google Scholar 

  • Kim K (2021) Glutathione in the nervous system as a potential therapeutic target to control the development and progression of amyotrophic lateral sclerosis. Antioxidants 10(7):10113

    Article  Google Scholar 

  • Kim SH, Jung SY, Lee KW, Lee SH, Cai M, Choi SM, Yang EJ (2013) Bee venom effects on ubiquitin proteasome system in hSOD1 G85R-expressing NSC34 motor neuron cells. BMC Complement Alt Med 13(1):1–9

    CAS  Google Scholar 

  • Kimonides VG, Khatibi NH, Svendsen CN, Sofroniew MV, Herbert J (1998) Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity. Proc Natl Acad Sci USA 95(4):1852–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kira Y, Nishikawa M, Ochi A, Sato E, Inoue M (2006) L-carnitine suppresses the onset of neuromuscular degeneration and increases the life span of mice with familial amyotrophic lateral sclerosis. Brain Res 1070(1):206–14

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi MS, Han D, Packer L (2000) Antioxidants and herbal extracts protect HT-4 neuronal cells against glutamate-induced cytotoxicity. Free Rad Res 32:115–124

    Article  CAS  Google Scholar 

  • Kobayashi Y, Liu YJ, Tobinaga S et al (2007) Effects of madecassoside on amyotrophic lateral sclerosis model mice. J Pharmacol Sci 103:136P-136P

    Google Scholar 

  • Koda EK (2021) Acupuncture for managing amyotrophic lateral sclerosis. Med Acupunct 33(1):103–6

    Article  PubMed  PubMed Central  Google Scholar 

  • Koh SH, Lee SM, Kim HY, Lee KY, Lee YJ, Kim HT, Kim J, Kim MH, Hwang MS, Song C, Yang KW (2006) The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosc Lett 395(2):103–7

    Article  CAS  Google Scholar 

  • Kou X, Chen N (2012) Pharmacological potential of ampelopsin in Rattan tea. Food Sci Hum Wellness 1(1):14–8

    Article  Google Scholar 

  • Kovalchuk MO et al (2018) Acute effects of riluzole and retigabine on axonal excitability in patients with amyotrophic lateral sclerosis: a randomized, double-blind, placebo-controlled, crossover trial. Clin Pharmacol Ther 104:1136–1145

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni NP, Vaidya B, Narula AS, Sharma SS (2021) Neuroprotective potential of caffeic acid phenethyl ester (CAPE) in CNS disorders: mechanistic and therapeutic insights. Curr Neuropharmacol 19(9):1401–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapchak PA, Araujo DM (2001) Preclinical development of neurosteroids as neuroprotective agents for the treatment of neurodegenerative diseases. Int Rev Neurobiol 46:379–397

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Kim YO, Kim H et al (2003) Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB 17:1943–1944

    Article  CAS  Google Scholar 

  • Lee M, Kwon BM, Suk K, Mc Geer E, Mc Geer PL (2012a) Effects of obovatol on GSH depleted glia-mediated neurotoxicity and oxidative damage. J Neuroimmune Pharmacol 7(1):173–86

    Article  PubMed  Google Scholar 

  • Lee SM, Yang EJ, Choi SM, Kim SH, Baek MG, Jiang JH (2012b) Effects of bee venom on glutamate-induced toxicity in neuronal and glial cells. CAM 2012:1

    Google Scholar 

  • Lee SH, Choi SM, Yang EJ (2015) Bee venom acupuncture augments anti-inflammation in the peripheral organs of hSOD1G93A transgenic mice. Toxins 7(8):2835–2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JK, Lin-Shia SY (2001) Mechanisms of cancer chemoprevention by curcumin. Proc Natl Sci CouncRepub China B 25(2):59–66

    Google Scholar 

  • Li P, Matsunaga K, Ohizumi Y (2000) Nerve growth factor potentiating compounds from Picrorhizaerhizoma. Biol Pharm Bull 23:890–892

    Article  CAS  PubMed  Google Scholar 

  • Li YM, Chen FP, Liu GQ (2003) Studies on inhibitive effect of gastrodin on PC12 cell damage induced by glutamate and H2O2. J China Pharmaceut Univ 34:456–460

    CAS  Google Scholar 

  • Li T, Liu JW, Zhang XD et al (2007) The neuroprotective effect of picroside II from Hu-Huang-Lian against oxidative stress. Am J Chin Med 35:681–691

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Liu SB, Zhang HY, Zhou FH, Liu YX, Lu Q, Yang L (2017) Antioxidant effects of celastrol against hydrogen peroxide-induced oxidative stress in the cell model of amyotrophic lateral sclerosis. Acta Physiol Sin 69(6):751–758

    Google Scholar 

  • Liang P, Wang Z, Qian T, Li K (2014) Acupuncture stimulation of Taichong (Liv3) andHegu (LI4) modulates the default mode network activity in Alzheimer’s disease. Am J Alzheimers Dis Other Demen 29(8):739–48

    Article  PubMed  Google Scholar 

  • Lin TY, Lu CW, Huang SK, Wang SJ (2013) Ferulic acid suppresses glutamate release through inhibition of voltage-dependent calcium entry in rat cerebrocortical nerve terminals. J Med Food 16(2):112–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin JG, Chen CJ, Yang HB, Chen YH, Hung SY (2017) Electroacupuncture promotesrecovery of motor function and reduces dopaminergic neuron degeneration inrodent models of Parkinsons disease. Int J Mol Sci 18(9):1846

  • Liu Y (1994) Therapeutic potential of madecassoside in transgenic mice of Amyotrophic Lateral Sclerosis. Chin Tradit Herb Drugs 24:1

    Google Scholar 

  • Liu YJ, Kobayashi Y, Li SH et al (2006) Therapeutic potential of madecassoside in transgenic mice of amyotrophic lateral sclerosis. Chin Tradit Herb Drugs 37:718–720

    CAS  Google Scholar 

  • Liu R, Liu JF, Xu KP et al (2011) Chemical constituents in Selaginella tamariscina. Central South Pharmacy 9:564–566

    CAS  Google Scholar 

  • Liu C, Leng B, Li Y, Jiang H, Duan W, Guo Y, Li C, Hong K (2018) Diallyl trisulfide protects motor neurons from the neurotoxic protein TDP-43 via activating lysosomal degradation and the antioxidant response. Neurochemical Res 43(12):2304–2312

    Article  CAS  Google Scholar 

  • Liu M, Yao X, Huang X, Shang H, Fan D, He J, Cui L (2021) A Randomized, double-blind, placebo-controlled trial of DL-3-n-butylphthalide in amyotrophic. Lateral Scler Patients 2021:1–12

    Google Scholar 

  • Lok CN, Sy LK, Liu F, Che CM (2011) Activation of autophagy of aggregation-prone ubiquitinated proteins by timosaponin A-III. J Biol Chem 286:31684–31696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longinetti E, Fang F (2019) Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr Opin Neurol 32(5):771–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu JH, Tan JQ, Durairajan SS et al (2012) Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy. Autophagy 8(1):98–108

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Le WD, Xie YY, Wang XP (2016) Current therapy of drugs in amyotrophic lateral sclerosis. Curr Neuropharmacol 14(4):314–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo L, Sun Y (2011) Neuroprotective effect of ferulic acid in vitro. J Chin Med Mat 34:1750–1753

    CAS  Google Scholar 

  • Lynch MA (2001) Lipoic acid confers protection against oxidative injury in nonneuronal and neuronal tissue. NutrNeurosci 4:419–438

    CAS  Google Scholar 

  • Mackenzie IRA, Rademakers R (2008) The role of TDP-43 in amyotrophic lateral sclerosis and frontotemporal dementia. Curr Opin Neurol 21:693–700. https://doi.org/10.1097/WCO.0b013e3283168d1d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnussen MJ, Glass JD (2017) Natural history of amyotrophic lateral sclerosis. Mol Cell Ther Motor Neuron Dis 2017:25–41. https://doi.org/10.1016/B978-0-12-802257-3.00002-X

    Article  Google Scholar 

  • Maioli E, Torricelli C, Valacchi G (2012) Rottlerin and curcumin: a comparative analysis. Ann N YAcad Sci 1259:65–76

    Article  CAS  Google Scholar 

  • Mao X, Barger SW (1998) Neuroprotection by dehydroepiandrosterone-sulfate: role of an NFkappaB-like factor. NeuroReport 9(4):759–763

    Article  CAS  PubMed  Google Scholar 

  • Mao QQ, Zhong XM, Feng CR et al (2010) Protective effects of paeoniflorin against glutamate induced neurotoxicity in PC12 cells via antioxidant mechanisms and Ca(2+) antagonism. Cell Mol Neurobiol 30:1059–1066

    Article  CAS  PubMed  Google Scholar 

  • Mazzini L, Balzarini C, Colombo R, Mora G, Pastore I, Ambrogio RD, Caligari M (2001) Effects of creatine supplementation on exercise performance and muscular strength in amyotrophic lateral sclerosis:preliminary results. J Neurol Sci 191(1–2):139–144

    Article  CAS  PubMed  Google Scholar 

  • Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD, Akkari PA (2019) ALS genetics, mechanisms, and therapeutics: where are we now? Front Neurosci 13:1310

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng Q, Wang A, Hua H, Jiang Y, Wang Y, Mu H, Wu Z, Sun K (2018) Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int J Nanomed 13:705

    Article  CAS  Google Scholar 

  • Michiels C, Raes M, Toussaint O, Remacle J (1994) Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidativestress. Free Rad Med 17:235–248

    Article  CAS  Google Scholar 

  • Militello A, Vitello G, Lunetta C, Toscano A, Maiorana G, Piccoli T, La Bella V (2002) The serum level of free testosterone is reduced in amyotrophic lateral sclerosis. J Neurol Sci 195(1):67–70

    Article  CAS  PubMed  Google Scholar 

  • Mohseni M, Sahebkar A, Askari G, Johnston TP, Alikiaii B, Bagherniya M (2021) The clinical use of curcumin on neurological disorders: an updated systematic review of clinical trials. Phytother Res 35(12):6862–6882

    Article  CAS  PubMed  Google Scholar 

  • Molina JA, De Bustos F, Jiménez-Jiménez FJ, Gómez-Escalonilla C, García-Redondo A, Esteban J, Guerrero-Sola A, Del Hoyo P, Martínez-Salio A, Ramírez-Ramos C, Indurain GR (2000) Serum levels of coenzyme Q 10 in patients with amyotrophic lateral sclerosis. J Neural Transm 107(8–9):1021–6

    Article  CAS  PubMed  Google Scholar 

  • Morgan S, Orrell RW (2016) Pathogenesis of amyotrophic lateral sclerosis. Br Med Bull 119(1):87–98. https://doi.org/10.1093/bmb/ldw026

    Article  CAS  PubMed  Google Scholar 

  • Morita T (2010) Celastrol: a new therapeutic potential of traditional Chinese medicine. Am J Hypertens 23:821

    Article  PubMed  Google Scholar 

  • Muller U, Krieglstein J (1995) Prolonged pretreatment with alpha-lipoic acid protects cultured neurons against hypoxic, glutamate-, or iron-induced injury. J Cerebr Blood Flow Metab 15(4):624–630

    Article  CAS  Google Scholar 

  • Nagase M, Yamamoto Y, Miyazaki Y, Yoshino H (2016) Increased oxidative stress in patients with amyotrophic lateral sclerosis and the effect of edaravone administration. Redox Rep 21(3):104–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naidu KA, Thippeswamy NB (2002) Inhibition of human low density lipoprotein oxidation by active principles from spices. Mol Cell Biochem 229:19–23

    Article  CAS  PubMed  Google Scholar 

  • Nam SM, Choi JH, Choi SH, Cho HJ, Cho YJ et al (2021) Ginseng gintonin alleviates neurological symptoms in the G93A-SOD1 transgenic mouse model of amyotrophic lateral sclerosis through lysophosphatidic acid 1 receptor. J Ginseng Res 45(3):390–400

    Article  PubMed  Google Scholar 

  • Nieves JW, Gennings C, Factor-Litvak P, Hupf J, Singleton J, Sharf V et al (2016) Association between dietary intake and function in amyotrophic lateral sclerosis. JAMA Neurol 73(12):1425–1432

    Article  PubMed  PubMed Central  Google Scholar 

  • Obrador E, Salvador R, Marchio P, López-Blanch R, Jihad-Jebbar A, Rivera P, Vallés SL, Banacloche S, Alcácer J, Colomer N, Coronado JA (2021) Nicotinamide riboside and pterostilbene cooperatively delay motor neuron failure in ALS SOD1G93A mice. Mol Neurobiol 58(4):1345–1371

    Article  CAS  PubMed  Google Scholar 

  • Ock J, Han HS, Hong SH et al (2010) Obovatol attenuates microglia-mediated neuroinflammation by modulating redox regulation. Br J Pharmacol 159:1646–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okano H, Yasuda D, Fujimori K, Morimoto S, Takahashi S (2020) Ropinirole, a new ALS drug candidate developed using iPSCs. TrendsPharmacol Sci 41(2):99–109

    CAS  Google Scholar 

  • Oken BS, Storzbach DM, Kaye JA (1998) The efficacy of ginkgo biloba on cognitive function in Alzheimer disease. Arch Neurol 55:1409–1415

    Article  CAS  PubMed  Google Scholar 

  • Orsucci D, Mancuso M, Ienco EC, LoGerfo A, Siciliano G (2011) Targeting mitochondrial dysfunction and neurodegeneration by means of coenzyme Q10 and its analogues. Currmed Chem 18(26):4053–64

    Article  CAS  Google Scholar 

  • Oskarsson B, Gendron TF, Staff NP (2018) Amyotropic lateral sclerosis: an update for 2018. Mayo Clin Proc 93(11):1617–1628. https://doi.org/10.1016/j.mayocp.2018.04.007

    Article  PubMed  Google Scholar 

  • Packer L, Rimbach G, Virgili F (1999) Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus maritima) bark, pycnogenol. Free Rad Biol Med 27:704–724

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Cai B, Wang K, Wang S, Zhou S, Yu X, Xu B, Chen L (2009) Neferine enhances insulin sensitivity in insulin resistant rats. J Ethnopharmacol 124:98–102

    Article  CAS  PubMed  Google Scholar 

  • Park M, Kim S (2015) A modern clinical approach of the traditional Korean saamacupuncture. Evid Based Complement Alternat Med 2015:703439

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng QL, Buzard AR, Lau BH (2002) Pycnogenol® protects neurons from amyloid-β peptide-induced apoptosis. Mol Brain Res 104(1):55–65

    Article  CAS  PubMed  Google Scholar 

  • Persky AM, Brazeau GA (2001) Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacol Rev 53:161–176

    CAS  PubMed  Google Scholar 

  • Piao HZ, Cui H, Piao RL et al (2008) Effects of wogonin on LPS induced production of proinflammatory cytokines. J xi’an Jiaotong Univ Med Sci 29:230–233

    CAS  Google Scholar 

  • Pioro EP (2000) Antioxidant therapy in ALS. ALS Other Motor Neuron Disord 1(4):5–12

    CAS  Google Scholar 

  • Pryce G, Baker D (2015) Endocannabinoids in multiple sclerosis and amyotrophic lateral sclerosis. Endo Cannabinoids 2015:213–31

    Google Scholar 

  • Rajabian A, Rameshrad M, Hosseinzadeh H (2019) Therapeutic potential of Panax ginseng and its constituents, ginsenosides and gintonin, in neurological and neurodegenerative disorders: a patent review. Expert Opin Ther Pat 29(1):55–72

    Article  CAS  PubMed  Google Scholar 

  • Rakotoarisoa M, Angelova A (2018) Amphiphilic nanocarrier systems for curcumin delivery in neurodegenerative disorders. Med 5:E126

    Google Scholar 

  • Ram N, Peak SL, Perez AR, Jinwal UK (2021) Implications of Withaferin A in neurological disorders. Neural Regen Res 16(2):304

    Article  CAS  PubMed  Google Scholar 

  • Ravindranath S, Lajri G (2019) Amyotrophic lateral sclerosis: an overview. J Drug Del Therap 9(3):613–616

    CAS  Google Scholar 

  • Robberecht W, Philips T (2013) The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 14:248–64

    Article  CAS  PubMed  Google Scholar 

  • Rusmini P, Cristofani R, Tedesco B, Ferrari V, Messi E, Piccolella M, Casarotto E, Chierichetti M, Cicardi ME, Galbiati M, Geroni C (2020) Enhanced clearance of neurotoxic misfolded proteins by the natural compound berberine and its derivatives. Int J Mol Sci 21(10):3443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu YJ, Lee KH, Kwon KR, Lee YH, An JC, Sun SH, Lee SJ (2010) Mountain ginseng pharmacopuncture treatment on three amyotrophic lateral sclerosis patients. J Pharmacopuncture 13(4):119–28

    Article  Google Scholar 

  • Sarraf P, Bitarafan S, Nafissi S, Fathi D, Abaj F, Motallebnejad ZA, Teimouri R, Vahedi K (2021) The correlation of the serum level of L-carnitine with disease severity in patients with amyotrophic lateral sclerosis. J ClinNeurosci 89:232–6

    CAS  Google Scholar 

  • Scallet AC, Nony PL, Rountree RL, Binienda ZK (2001) Biomarkers of 3-nitropropionic acid (3-NPA)-induced mitochondrial dysfunction as indicators of neuroprotection. Ann NY Acad Sci 939:381–392

    Article  CAS  PubMed  Google Scholar 

  • Schilling G, Coonfield ML, Ross CA, Borchelt DR (2001) Coenzyme Q10 and remacemide hydrochloride ameliorate motor deficits in a Huntington’s disease transgenic mouse model. Neurosci Lett 315:149–153

    Article  CAS  PubMed  Google Scholar 

  • Shatunov A, Al-Chalabi A (2021) The genetic architecture of ALS. Neurobiol Dis 147:105156

    Article  CAS  PubMed  Google Scholar 

  • Shepheard SR, Parker MD, Cooper-Knock J, Verber NS, Tuddenham L, Heath P, Beauchamp N, Place E, Sollars ESA, Turner MR et al (2021) Value of systematic genetic screening of patients with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 92:510–518

    Article  PubMed  Google Scholar 

  • Shi G, Zhou J, Huang K, Bi FF (2022) Trends in global amyotrophic lateral sclerosis research from 2000 to 2022: a bibliometric analysis. Front Neurosci 16:1

    Article  Google Scholar 

  • Silva RFM, Pogačnik L (2021) Neuroprotective properties of food-borne polyphenols in neurodegenerative diseases. Antioxidants 10(11):1810. https://doi.org/10.3390/antiox10111810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva JM, Nobre MS, Albino SL, Lócio LL, Nascimento AP, Scotti L, Scotti MT, Oshiro-Junior JA, Lima MC, Mendonça-Junior FJ, Moura RO (2020) Secondary metabolites with antioxidant activities for the putative treatment of amyotrophic lateral sclerosis (ALS):“experiment evid.” Oxid Med Cell Longev 24:5642029

    Google Scholar 

  • Song Y, Liu JP, Shi FG et al (2011) Inhibitory effect of isorhynchophylline on lipopolysaccharide stimulated release of inflammatory mediators in primary rat astrocytes. Pharmac Clin Res 19:311–314

    Google Scholar 

  • Spasić S, Nikolić-Kokić A, Miletić S, Oreščanin-Dušić Z, Spasić MB, Blagojević D, Stević Z (2020) Edaravone may prevent ferroptosis in ALS. Curr Drug Targets 21(8):776–80

    Article  PubMed  Google Scholar 

  • Spindler M, Beal MF, Henchcliffe C (2009) Coenzyme Q10 effects in neurodegenerative disease. Neuropsychiatr Dis Treat 5:597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan E, Rajasekaran R (2018) Quantum chemical and molecular mechanics studies on the assessment of interactions between resveratrol and mutant SOD1 (G93A) protein. J Comp-Aided Mol Des 32(12):1347–1361

    Article  CAS  Google Scholar 

  • Stetkarova I, Ehler E (2021) Diagnostics of amyotrophic lateral sclerosis: up to date. Diagnostics 11:231

    Article  PubMed  PubMed Central  Google Scholar 

  • Sudhakaran P (2017) Amyotrophic lateral sclerosis: an acupuncture approach. Med Acupunct 29(5):260–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun MM, Bu H, Li B, Yu JX, Guo YS, Li CY (2009) Neuroprotective potential of phase II enzyme inducer diallyl trisulfide. Neurological Res 31(1):23–27

    Article  Google Scholar 

  • Tan Z (2009) Neural protection by naturopathic compounds—an example of tetramethylpyrazine from retina to brain. J Ocul Biol Dis Inform 2(2):57–64

    Article  CAS  Google Scholar 

  • Tarnopolsky MA, Beal MF (2001) Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Ann Neurol 49:561–574

    Article  CAS  PubMed  Google Scholar 

  • Thal LJ, Calvani M, Amato A, Carta AA (2000) 1-year controlled trial of acetyl-Lcarnitine in early-onset AD. Neurology 55:805–810

    Article  CAS  PubMed  Google Scholar 

  • Therrien M et al (2016) ALS: recent developments from genetics studies. Curr Neurol Neurosci Rep 16:59–71

    Article  PubMed  Google Scholar 

  • Thomas TW (2009) Motor neuron diseases. Practical guide to neurogenetics. Pages 150–174

  • Tian YY, Jiang B, An LJ, Bao YM (2007) Neuroprotective effect of catalpol against MPP+-induced oxidative stress in mesencephalic neurons. Eur J Pharmacol 568(1–3):42–148

    Google Scholar 

  • Tian Y, Jin S, Promes V, Liu X, Zhang Y (2021) Astragaloside IV and echinacoside benefit neuronal properties via direct effects and through upregulation of SOD1 astrocyte function in vitro NaunynSchmiedebergs. Arch Pharmacol 394:1019–1029. https://doi.org/10.1007/s00210-020-02022-w

    Article  CAS  Google Scholar 

  • Tripodo G, Chlapanidas T, Perteghella S, Vigani B, Mandracchia D, Trapani A, Galuzzi M, Tosca MC, Antonioli B, Gaetani P, Marazzi M, Torre ML (2015) Mesenchymal stromal cells loading curcumin-INVITE-micelles: a drug delivery system for neurodegenerative diseases. Colloids Surf B Biointerfaces 125:300–308

    Article  CAS  PubMed  Google Scholar 

  • Turner MR, Swash M (2015) The expanding syndrome of amyotrophic lateral sclerosis: a clinical and molecular odyssey. J Neurol Neurosurg Psychiatry 86(6):667–73

    Article  PubMed  Google Scholar 

  • Ullah F, Liang A, Rangel A, Gyengesi E, Niedermayer G, Münch G (2017) High bioavailability curcumin: an anti-inflammatory and neurosupportive bioactive nutrient for neurodegenerative diseases characterized by chronic neuroinflammation. Arch Toxicol 91:1623–1634

    Article  CAS  PubMed  Google Scholar 

  • Urbi B, Owusu MA, Hughes I, Katz M, Broadley S, Sabet A (2019) Effects of cannabinoids in Amyotrophic Lateral Sclerosis (ALS) murine models: a systematic review and meta-analysis. J Neurochem 149(2):284–97

    Article  CAS  PubMed  Google Scholar 

  • Usarek E, Gajewska B, Kazmierczak B, Kuzma M, Dziewulska D, Baranczyk-Kuzma A (2005) A study of glutathione S-transferase P1 expression in central nervous system of subjects with amyotrophic lateral sclerosis using RNA extraction from formalin-fixed, paraffin-embedded material. Neurochem Res 20:1003–1007

    Article  Google Scholar 

  • Veldink JH, Kalmijn S, Groeneveld GJ, Wunderink W, Koster A, De Vries JH, Van Der Luyt J, Wokke JH, Van Den Berg LH (2007) Intake of polyunsaturated fatty acids and vitamin E reduces the risk of developing amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 78:367–371

    Article  CAS  PubMed  Google Scholar 

  • Vielhaber S, Kaufmann J, Kanowski M, Sailer M, Feistner H, Tempelmann C, Elger CE, Heinze HJ, Kunz WS (2001) Effect of creatine supplementation on metabolite levels in ALS motor cortices. Exp Neurol 172(2):377–382

    Article  CAS  PubMed  Google Scholar 

  • Wang JH, Kang B, Hu YE et al (2008) Catalpol attenuates PC12 cells injury induced by L-glutamate. Chin Pharmacol Bull 24:1258–1259

    CAS  Google Scholar 

  • Wang CJ, Hu CP, Xu KP et al (2010) Protective effect of selaginellin on glutamate-induced cytotoxicity and apoptosis in differentiated PC12 cells Naunyn Schmiedbergs. Arch Pharmacol 381:73–81

    Article  CAS  Google Scholar 

  • Wang X, Zhu G, Yang S et al (2011) Paeonol prevents excitotoxicity in rat pheochromocytoma PC12 cells via downregulation of ERK activation and inhibition of apoptosis. Planta Med 77:1695–1701

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Xing H, Qin X, Ren Q, Yang J, Li L (2020) Pharmacological effects and mechanisms of muscone. J Ethnopharmacol 262:113120

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Liu J, Zhu Z, Su CF, Sreenivasmurthy SG, Iyaswamy A, Lu JH, Chen G, Song JX, Li M (2021) Traditional Chinese medicine compounds regulate autophagy for treating neurodegenerative disease: a mechanism review. Biomed Pharmacoth 133:110968

    Article  CAS  Google Scholar 

  • Wong VK, Wu AG, Wang JR, Liu L, Law BY (2015) Neferine attenuates the protein level and toxicity of mutant huntingtin in PC-12 cells via induction of autophagy. Mol 20:3496–3514

    Article  Google Scholar 

  • Wu AG, Wong VK, Zeng W, Liu L, Law BY (2015) Identification of novel autophagic radix polygalae fraction by cell membrane chromatography and UHPLC–(Q)TOF–MS for degradation of neurodegenerative disease proteins. Sci Rep 5:17199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Chen S, Li X, Luo G, Li L, Le W (2006) Neuroprotective effects of (-)-epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral sclerosis. Neurochem Res 31(10):1263–9

    Article  CAS  PubMed  Google Scholar 

  • Yamakoshi J, Kataoka S, Koga T, Ariga T (1999) Proanthocyanidin-rich extract from grape seeds attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Atherosclerosis 142:139–149

    Article  CAS  PubMed  Google Scholar 

  • Yang EJ, Jiang JH, Lee SM, Hwang HS, Lee MS, Choi SM (2010a) Electro acupuncture reduces neuroinflammatory responses in symptomatic amyotrophic lateral sclerosis model. J Neuroimmunol 223(1–2):84–91

    Article  CAS  PubMed  Google Scholar 

  • Yang EJ, Jiang JH, Lee SM, Yang SC, Hwang HS, Lee MS, Choi SM (2010b) Bee venom attenuates neuroinflammatory events and extends survival in amyotrophic lateral sclerosis models. J Neuroinflamm 7(1):1–2

    Article  CAS  Google Scholar 

  • Yerbury JJ, Cashman NR (2020) Selenium-based compounds: emerging players in the ever-unfolding story of SOD1 in amyotrophic lateral sclerosis. eBioMed 59:1

    Article  Google Scholar 

  • Yuan D, Ma B, Yang JY et al (2009) Anti-inflammatory effects of rhynchophylline and isorhynchophylline in mouse N9 microglial cells and the molecular mechanism. Int Immunopharmacol 9:1549–1554

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang M, Sugahara K, Sagara Y, Meng Z, Xu S, Kodama H (1999) Effect of steroidal saponins of Anemarrhenaerhizoma on superoxide generation in human neutrophils. Biochem Biophys Res Commun 259:636–639

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Xing GQ, Barker JL, Chang Y, Maric D, Ma W, Li BS, Rubinow DR (2001) Alpha-lipoic acid protects rat cortical neurons against cell death induced by amyloid and hydrogen peroxide through the Akt signalling pathway. Neurosci Lett 312(3):125–128

    Article  CAS  PubMed  Google Scholar 

  • Zhang FY, Zheng WH, Pi RB et al (2009) Cryptotanshinone protects primary rat cortical neurons from glutamate-induced neurotoxicity via the activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. Exp Brain Res 139:109–118

    Article  Google Scholar 

  • Zhang R, Lao L, Ren K, Berman BM (2014) Mechanisms of acupuncture-electroacupuncture on persistent pain. Anesthesiology 120(2):482–503

    Article  PubMed  Google Scholar 

  • Zhang X, Li Q, Lv C, Xu H, Liu X, Sui Z, Bi K (2015) Characterization of multiple constituents in Kai-Xin-San prescription and rat plasma after oral administration by liquid chromatography with quadrupole time-of-flight tandem mass spectrometry. J Sep Sci 38:2068–2075

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Liu Y, Ye Y, Wang XR, Lin LT, Xiao LY, Zhou P, Shi GX, Liu CZ (2018) Bee venom therapy: potential mechanisms and therapeutic applications. Toxicon 148:64–73

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhu C, Liu X, Su E, Cao F, Zhao L (2022) Study on synergistic antioxidant effect of typical functional components of hydroethanolic leaf extract from ginkgo biloba in vitro. Mol 27(2):439

    Article  Google Scholar 

  • Zheng M, Fan DS (2011) Different distribution of NMDA receptor subunits in cortex contributes to selective vulnerability of motor neurons in amyotrophic lateral sclerosis. Beijing Da Xue XueBao 43:228–233

    CAS  Google Scholar 

  • Zhou Y, Wang X, Ying W, Wu D, Zhong P (2019) Cryptotanshinone attenuates inflammatory response of microglial cells via the Nrf2/HO-1 pathway. Front Neurosci 13:852. https://doi.org/10.3389/fnins.2019.00852

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Zhu L, Qiu W, Liu Y, Yang F, Chen W, Xu R (2020) Nicotinamide riboside enhances mitochondrial proteostasis and adult neurogenesis through activation of mitochondrial unfolded protein response signaling in the brain of ALS SOD1G93A mice. Int J Biol Sci 16(2):284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou ZY, Zhou ZR, Che CH, Liu CY, He RL, Huang HP (2017) Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 88:540–549

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to the Director Dr. (Col.) A.Garg and Joint Director, Dr. Manoj Goel, KIET Group of Institutions for their motivation and all-round support.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parul Grover.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katiyar, D., Singhal, S., Bansal, P. et al. Nutraceuticals and phytotherapeutics for holistic management of amyotrophic lateral sclerosis. 3 Biotech 13, 62 (2023). https://doi.org/10.1007/s13205-023-03475-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-023-03475-5

Keywords

Navigation