Skip to main content

Advertisement

Log in

Biofilm formation in marine bacteria and biocidal sensitivity: interplay between a potent antibiofilm compound (AS162) and quorum-sensing autoinducers

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The capacity of two homoserine lactones to stimulate the marine bacteria Pseudoalteromonas ulvae (TC14 strain) for its capacity to form a biofilm when exposed to a potent antibiofilm compound AS162 is reported. Effective concentrations (EC50) of AS162 at 24 h, 48 h, and 72 h were, respectively, of 4.3, 4.4, and 6.0 µM. When tested in combination with HSLs, results showed that quorum-sensing signal molecules 3-oxo-C6 and 3-oxo-C8 homoserine lactones do not act directly on the biofilm formation, but are able to interfere positively with AS162 to promote biofilm growth with EC50 ranging from 30 to 50 µM. The same results were obtained with two other marine bacterial strains: Pseudoalteromonas lipolytica TC8 and Paracoccus sp. 4M6. These findings suggest that HSLs can significantly affect the biocidal sensitivity of marine bacteria to antifouling agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andjouh S, Blache Y (2015) Click-based synthesis of bromotyrosine alkaloid analogs as potential anti-biofilm leads for SAR studies. Bioorg Med Chem Lett 25(24):5762–5766

    Article  CAS  Google Scholar 

  • Andjouh S, Blache Y (2016) Screening of bromotyramine analogues as antifouling compounds against marine bacteria. Biofouling 32(8):871–881

    Article  CAS  Google Scholar 

  • Andjouh S, Blache Y (2019) Parallel synthesis of a bis-triazoles library as psammaplin A analogues: a new wave of antibiofilm compounds? Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2018.12.047

    Article  PubMed  Google Scholar 

  • Andjouh S, Perrin FX, Blache Y (2017) in “bis-triazoles compounds with anti-biofilm and anti-corrosion properties”. WO 2017/102883 A1, International Application Number PCT/EP2016/081068. US 2018 / 0370953 A1. https://patents.google.com/patent/US20180370953A1/en

  • Ayé AM, Bonnin-Jusserand M, Brian-Jaisson F, Ortalo-Magné A, Culioli G, Nevry RK, Blache NY, Molmeret M (2015) Modulation of violacein production and phenotypes associated with biofilm by exogenous quorum sensing N-acylhomoserine lactones in the marine bacterium Pseudoalteromonas ulvae TC14. Microbiology 161(10):2039–2051

    Article  Google Scholar 

  • Bhadury P, Wright P (2004) Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219:561–578

    Article  CAS  Google Scholar 

  • Brian-Jaisson F, Ortalo-Magné A, Guentas-Dombrowsky L, Armougom F, Blache Y, Molmeret M (2014) Identification of bacterial strains isolated from the mediterranean sea exhibiting different abilities of biofilm formation. Microb Ecol 68:94–110

    Article  Google Scholar 

  • Camps M, Briand J-F, Guentas-Dombrowsky L, Culioli G, Bazire A, Blache Y (2011) Antifouling activity of commercial biocides vs. Natural and natural-derived products assessed by marine bacteria adhesion bioassay. Mar Poll Bull 62:1032–1040

    Article  CAS  Google Scholar 

  • Ciriminna R, Bright F, Pagliaro M (2015) Ecofriendly antifouling marine coatings. ACS Sustain Chem Eng 3:559–565

    Article  CAS  Google Scholar 

  • De Nys R, Steinberg PD (2002) Linking marine biology and biotechnology. Curr Opin Biotechnol 13:244–248

    Article  Google Scholar 

  • Fitridge I, DempsterT Guenther J, de Nys R (2012) The impact and control of biofouling in marine aquaculture: a review. Biofouling 28:649–669

    Article  Google Scholar 

  • Fusetani N (2004) Biofouling and antifouling. Nat Prod Rep 21:94–104

    Article  CAS  Google Scholar 

  • Fusetani N (2011) Antifouling marine natural products. Nat Prod Rep 28:400–410

    Article  CAS  Google Scholar 

  • Gerwick WH, Moore Bradley S (2012) Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol 19:85–98

    Article  CAS  Google Scholar 

  • Grasland B, Mitalane J, Briandet R, Quémener E, Meylheuc T, Linossier I, Vallée-Réhel K, Haras D (2003) Bacterial biofilm in seawater: cell surface properties of early-attached marine bacteria. Biofouling 19:307–331

    Article  CAS  Google Scholar 

  • Hamann MT, Scheuer PJ, Kelly-Borges M (1993) Biogenetically diverse, bioactive constituents of a sponge, order verongida: bromotyramines and sesquiterpene-shikimate derived metabolites. J Org Chem 58:6565–6569

    Article  CAS  Google Scholar 

  • Hellio C, Tsoukatou M, Maréchal J-P, Aldred N, Beaupoil C, Clare AS, Vagias C, Roussis V (2005) Inhibitory effects of mediterranean sponge extracts and metabolites on larval settlement of the barnacle balanus amphitrite. Mar Biotechnol 7:297–305

    Article  CAS  Google Scholar 

  • Krug PJ (2006) Defense of benthic invertebrates against surface colonization by larvae: a chemical arms race. Antifouling compounds. Springer, Berlin, Heidelberg, pp 1–53

    Google Scholar 

  • Linares D, Bottzeck O, Pereira O, Praud-Tabariès A, Blache Y (2011) Designing 2-aminoimidazole alkaloids analogs with anti-biofilm activities: structure–activities relationships of polysubstituted triazoles. Bioorg Med Chem Lett 21:6751

    Article  CAS  Google Scholar 

  • Liu N, Xu Y, Hossain S, Huang N, Coursolle D, Gralnick JA, Boon EM (2012) Nitric oxide regulation of cyclic di-GMP synthesis and hydrolysis in Shewanella woodyi. Biochem. (Mosc) 51:2087–2099

    Article  CAS  Google Scholar 

  • Mangwani N, Kumari S, Das S (2016) Effect of synthetic N-acylhomoserine lactones on cell–cell interactions in marine Pseudomonas and biofilm mediated degradation of polycyclic aromatic hydrocarbons. Chem Eng J 302:172–186

    Article  CAS  Google Scholar 

  • Maréchal J-P, Hellio C (2009) Challenges for the development of new non-toxic antifouling solutions. Int JMol Sci 10:4623–4637

    Article  Google Scholar 

  • Müller WG, Brümmer F, Batel R, Müller I, Schröder H (2003) Molecular biodiversity. Case study: Porifera (sponges). Naturwissenschaften 90:103–120

    Article  Google Scholar 

  • Muras A, López-Pérez M, Mayer C, Parga A, Amaro-Blanco J Ana, Otero A (2018) High prevalence of quorum-sensing and quorum-quenching activity among cultivable bacteria and metagenomic sequences in the mediterranean sea. Genes 9:100

    Article  Google Scholar 

  • Othmani A, Bouzidi N, Viano Y, Alliche Z, Seridi H, Blache Y, El Hattab M, Briand J-F, Culioli G (2014) Anti-microfouling properties of compounds isolated from several mediterranean dictyota spp. J Appl Phycol 26:1573–1584

    CAS  Google Scholar 

  • Passos da Silva D, Schofield MC, Parsek MR, Tseng BS (2017) An update on the sociomicrobiology of quorum sensing in gram-negative biofilm development. Pathogens (Basel Switz.) 6:51

    Google Scholar 

  • Qian PY, Lau SCK, Dahms HU, Dobretsov S, Harder T (2007) Marine biofilms as mediators of colonization by marine macroorganisms: implications for antifouling and aquaculture. Mar Biotechnol 9:399–410

    Article  CAS  Google Scholar 

  • Sipkema D, Franssen MR, Osinga R, Tramper J, Wijffels R (2005) Marine sponges as pharmacy. Mar Biotechnol 7:142–162

    Article  CAS  Google Scholar 

  • Steinberg P, Schneider R, Kjelleberg S (1997) Chemical defenses of seaweeds against microbial colonization. Biodegradation 8:211–220

    Article  CAS  Google Scholar 

  • Stowe SD, Richards JJ, Tucker AT, Thompson R, Melander C, Cavanagh J (2011) Anti-biofilm compounds derived from marine sponges. Mar Drugs 9:2010–2035

    Article  CAS  Google Scholar 

  • Sun J, Wu L, An B, de Voogd J, Cheng N, Lin W (2018) Bromopyrrole alkaloids with the inhibitory effects against the biofilm formation of gram-negative bacteria. Mar drugs 16:9

    Article  Google Scholar 

  • Tsukamoto S, Kato H, Hirota H, Fusetani N (1996a) Ceratinamides a and b: new antifouling dibromotyrosine derivatives from the marine sponge pseudoceratina purpurea. Tetrahedron 52:8181–8186

    Article  CAS  Google Scholar 

  • Tsukamoto S, Kato H, Hirota H, Fusetani N (1996b) Ceratinamine: an unprecedented antifouling cyanoformamide from the marine sponge Pseudoceratina purpurea. J Org Chem 61:2936–2937

    Article  CAS  Google Scholar 

  • Tsukamoto S, Kato H, Hirota H, Fusetani N (1996c) Pseudoceratidine: a new antifouling spermidine derivative from the marine sponge Pseudoceratina purpurea. Tetrahedron Lett 37:1439–1440

    Article  CAS  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  Google Scholar 

  • Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies (public, or private). The Paracoccus sp. strain 4M6 was provided by the LBCM (Université de Bretagne Sud).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Blache.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gozoua, E., Koffi-Nevry, R. & Blache, Y. Biofilm formation in marine bacteria and biocidal sensitivity: interplay between a potent antibiofilm compound (AS162) and quorum-sensing autoinducers. 3 Biotech 9, 338 (2019). https://doi.org/10.1007/s13205-019-1866-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1866-6

Keywords

Navigation