Skip to main content

Advertisement

Log in

Identification of Bacterial Strains Isolated from the Mediterranean Sea Exhibiting Different Abilities of Biofilm Formation

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The Mediterranean Sea has rarely been investigated for the characterization of marine bacteria as compared to other marine environments such as the Atlantic or Pacific Ocean. Bacteria recovered from inert surfaces are poorly studied in these environments, when it has been shown that the community structure of attached bacteria can be dissimilar from that of planktonic bacteria present in the water column. The objectives of this study were to identify and characterize marine bacteria isolated from biofilms developed on inert surfaces immersed in the Mediterranean Sea and to evaluate their capacity to form a biofilm in vitro. Here, 13 marine bacterial strains have been isolated from different supports immersed in seawater in the Bay of Toulon (France). Phylogenetic analysis and different biological and physico-chemical properties have been investigated. Among the 13 strains recovered, 8 different genera and 12 different species were identified including 2 isolates of a novel bacterial species that we named Persicivirga mediterranea and whose genus had never been isolated from the Mediterranean Sea. Shewanella sp. and Pseudoalteromonas sp. were the most preponderant genera recovered in our conditions. The phenotypical characterization revealed that one isolate belonging to the Polaribacter genus differed from all the other ones by its hydrophobic properties and poor ability to form biofilms in vitro. Identifying and characterizing species isolated from seawater including from Mediterranean ecosystems could be helpful for example, to understand some aspects of bacterial biodiversity and to further study the mechanisms of biofilm (and biofouling) development in conditions approaching those of the marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O'Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  PubMed  Google Scholar 

  2. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  PubMed  Google Scholar 

  3. Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182:2675–2679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    Article  CAS  PubMed  Google Scholar 

  5. Zhang X, Bishop PL, Kupferle MJ (1998) Measurement of polysaccharides and proteins in biofilm extracellular polymers. Water Sci Technol 37:345–348

    Article  CAS  Google Scholar 

  6. Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    Article  CAS  PubMed  Google Scholar 

  7. Dobretsov S (2010) Marine biofilms. In: Durr S, Thomason JC (eds) Biofouling. Blackwell, Oxford, pp 123–136

    Google Scholar 

  8. Terlizzi A, Faimali M (2010) Fouling on artificial substrata. In: Durr S, Thomason JC (eds) Biofouling. Blackwell, Oxford, pp 170–185

    Google Scholar 

  9. Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104

    Article  CAS  Google Scholar 

  10. Grasland B, Mitalane J, Briandet R, Quemener E, Meylheuc T, Linossier I, Vallee-Rehel K, Haras D (2003) Bacterial biofilm in seawater: cell surface properties of early-attached marine bacteria. Biofouling 19:307–313

    Article  CAS  PubMed  Google Scholar 

  11. Patel P, Callow ME, Joint I, Callow JA (2003) Specificity in the settlement—modifying response of bacterial biofilms towards zoospores of the marine alga Enteromorpha. Environ Microbiol 5:338–349

    Article  CAS  PubMed  Google Scholar 

  12. Salaun S, La Barre S, Dos Santos-Goncalvez M, Potin P, Haras D, Bazire A (2012) Influence of exudates of the kelp Laminaria digitata on biofilm formation of associated and exogenous bacterial epiphytes. Microb Ecol 64:359–369

    Article  PubMed  Google Scholar 

  13. Dang H, Lovell CR (2002) Numerical dominance and phylotype diversity of marine Rhodobacter species during early colonization of submerged surfaces in coastal marine waters as determined by 16S ribosomal DNA sequence analysis and fluorescence in situ hybridization. Appl Environ Microbiol 68:496–504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Skovhus TL, Holmstrom C, Kjelleberg S, Dahllof I (2007) Molecular investigation of the distribution, abundance and diversity of the genus Pseudoalteromonas in marine samples. FEMS Microbiol Ecol 61:348–361

    Article  CAS  PubMed  Google Scholar 

  15. Stin OC, Carnahan A, Singh R, Powell J, Furuno JP, Dorsey A, Silbergeld E, Williams HN, Morris JG (2003) Characterization of microbial communities from coastal waters using microarrays. Environ Monit Assess 81:327–336

    Article  PubMed  Google Scholar 

  16. Dang H, Li T, Chen M, Huang G (2008) Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl Environ Microbiol 74:52–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Lee JW, Nam JH, Kim YH, Lee KH, Lee DH (2008) Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces. J Microbiol 46:174–182

    Article  CAS  PubMed  Google Scholar 

  18. Lee OO, Lau SCK, Tsoi MMY, Li X, Plakhotnikova I, Dobretsov S, Wu MCS, Wong P-K, Weinbauer M, Qian P-Y (2006) Shewanella irciniae sp. nov., a novel member of the family Shewanellaceae, isolated from the marine sponge Ircinia dendroides in the Bay of Villefranche, Mediterranean Sea. Int J Syst Evol Microbiol 56:2871–2877

    Article  CAS  PubMed  Google Scholar 

  19. Heindl H, Wiese J, Thiel V, Imhoff JF (2010) Phylogenetic diversity and antimicrobial activities of bryozoan-associated bacteria isolated from Mediterranean and Baltic Sea habitats. Syst Appl Microbiol 33:94–104

    Article  CAS  PubMed  Google Scholar 

  20. Hentschel U, Schmid M, Wagner M, Fieseler L, Gernert C, Hacker J (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35:305–312

    Article  CAS  PubMed  Google Scholar 

  21. Danovaro R, Company JB, Corinaldesi C, D'Onghia G, Galil B, Gambi C, Gooday AJ, Lampadariou N, Luna GM, Morigi C, Olu K, Polymenakou P, Ramirez-Llodra E, Sabbatini A, Sarda F, Sibuet M, Tselepides A (2010) Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable. PLoS One 5:e11832

    Article  PubMed Central  PubMed  Google Scholar 

  22. Camps M, Briand J-F, Guentas-Dombrowsky L, Culioli G, Bazire A, Blache Y (2011) Antifouling activity of commercial biocides vs. natural and natural-derived products assessed by marine bacteria adhesion bioassay. Mar Pollut Bull 62:1032–1040

    Article  CAS  PubMed  Google Scholar 

  23. Briand JF, Djeridi I, Jamet D, Coupe S, Bressy C, Molmeret M, Le Berre B, Rimet F, Bouchez A, Blache Y (2012) Pioneer marine biofilms on artificial surfaces including antifouling coatings immersed in two contrasting French Mediterranean coast sites. Biofouling 28:453–463

    Article  CAS  PubMed  Google Scholar 

  24. Dheilly A, Soum-Soutéra E, Klein GL, Bazire A, Compère C, Haras D, Dufour A (2010) Antibiofilm activity of the marine bacterium Pseudoalteromonas sp. strain 3 J6. Appl Environ Microbiol 76:3452–3461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Todorova SG, Costello AM (2006) Design of Shewanella-specific 16S rRNA primers and application to analysis of Shewanella in a minerotrophic wetland. Environ Microbiol 8:426–432

    Article  CAS  PubMed  Google Scholar 

  26. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  28. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  29. Cashion P, Holder-Franklin MA, McCully J, Franklin M (1977) A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466

    Article  CAS  PubMed  Google Scholar 

  30. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  PubMed  Google Scholar 

  31. Huss VA, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192

    Article  CAS  PubMed  Google Scholar 

  32. Rashid MH, Kornberg A (2000) Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 97:4885–4890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Bellon-Fontaine MN, Rault J, van Oss CJ (1996) Microbial adhesion to solvents: a novel method to determine the electron-donor/electron-acceptor or Lewis acid–base properties of microbial cells. Colloid Surf B 7:47–53

    Article  CAS  Google Scholar 

  34. Cuperus PL, van der Mei HC, Reid G, Bruce AW, Khoury AH, Rouxhet PG, Busscher HJ (1993) Physicochemical surface characteristics of urogenital and poultry lactobacilli. J Colloid Interface Sci 156:319–324

    Article  CAS  Google Scholar 

  35. Bouttier S, Han KG, Ntsama C, Bellon-Fontaine MN, Fourmat J (1994) Role of electrostatic interactions in the adhesion of Pseudomonas fragi and Brochothrix thermosphacta to meat. Colloid Surf B 2:57–65

    Article  CAS  Google Scholar 

  36. Pelletier C, Bouley C, Cayuela C, Bouttier S, Bourlioux P, Bellon-Fontaine MN (1997) Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains. Appl Environ Microbiol 63:1725–1731

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Kosmulski M, Rosenholm JB (2004) High ionic strength electrokinetics. Adv Colloid Interface 112:93–107

    Article  CAS  Google Scholar 

  38. Chavant P, Gaillard-Martinie B, Talon R, Hebraud M, Bernardi T (2007) A new device for rapid evaluation of biofilm formation potential by bacteria. J Microbiol Methods 68:605–612

    Article  CAS  PubMed  Google Scholar 

  39. Clarridge JE 3rd (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17:840–862

    Google Scholar 

  40. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiology Today, pp. 152–155

  41. Yi H, Chun J (2012) Unification of the genera Nonlabens, Persicivirga, Sandarakinotalea and Stenothermobacter into a single emended genus, Nonlabens, and description of Nonlabens agnitus sp. nov. Syst Appl Microbiol 35:150–155

    Article  CAS  PubMed  Google Scholar 

  42. Dheilly A (2007) Biofilms bactériens marins multi-espèces : mise en évidence d’un effet antagoniste. PhD thesis, Université de Bretagne-Sud, France

  43. Rivadeneyra MA, Parraga J, Delgado R, Ramos-Cormenzana A, Delgado G (2004) Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with different salinities. FEMS Microbiol Ecol 48:39–46

    Article  CAS  PubMed  Google Scholar 

  44. Vandecandelaere I, Nercessian O, Segaert E, Achouak W, Mollica A, Faimali M, De Vos P, Vandamme P (2008) Alteromonas genovensis sp. nov., isolated from a marine electroactive biofilm and emended description of Alteromonas macleodii Baumann et al. 1972 (Approved Lists 1980). Int J Syst Evol Microbiol 58:2589–2596

    Article  CAS  PubMed  Google Scholar 

  45. Egan S, Holmström C, Kjelleberg S (2001) Pseudoalteromonas ulvae sp. nov., a bacterium with antifouling activities isolated from the surface of a marine alga. Int J Syst Evol Microbiol 51:1499–1504

    Article  CAS  PubMed  Google Scholar 

  46. Ivanova EP, Kiprianova EA, Mikhailov VV, Levanova GF, Garagulya AD, Gorshkova NM, Vysotskii MV, Nicolau DV, Yumoto N, Taguchi T, Yoshikawa S (1998) Phenotypic diversity of Pseudoalteromonas citrea from different marine habitats and emendation of the description. Int J Syst Bacteriol 48:247–256

    Article  PubMed  Google Scholar 

  47. Ivanova EP, Romanenko LA, Matte MH, Matte GR, Lysenko AM, Simidu U, Kita-Tsukamoto K, Sawabe T, Vysotskii MV, Frolova GM, Mikhailov V, Christen R, Colwell RR (2001) Retrieval of the species Alteromonas tetraodonis Simidu et al. 1990 as Pseudoalteromonas tetraodonis comb. nov. and emendation of description. Int J Syst Evol Microbiol 51:1071–1078

    Article  CAS  PubMed  Google Scholar 

  48. Schlaberg R, Simmon KE, Fisher MA (2012) A systematic approach for discovering novel, clinically relevant bacteria. Emerg Infect Dis 18:422–430

    Google Scholar 

  49. Tindall BJ, Rossello-Mora R, Busse HJ, Ludwig W, Kampfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266

    Article  CAS  PubMed  Google Scholar 

  50. Janda JM, Abbott SL (2002) Bacterial identification for publication: when is enough enough? J Clin Microbiol 40:1887–1891

    Article  PubMed Central  PubMed  Google Scholar 

  51. Yoon J-H, Kang S-J, Oh T-K (2006) Polaribacter dokdonensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 56:1251–1255

    Article  CAS  PubMed  Google Scholar 

  52. Hirota K, Nodasaka Y, Orikasa Y, Okuyama H, Yumoto I (2005) Shewanella pneumatophori sp. nov., an eicosapentaenoic acid-producing marine bacterium isolated from the intestines of Pacific mackerel (Pneumatophorus japonicus). Int J Syst Evol Microbiol 55:2355–2359

    Article  CAS  PubMed  Google Scholar 

  53. Nedashkovskaya OI, Kwon KK, Kim S-J (2009) Reclassification of Donghaeana dokdonensis Yoon et al. 2006 as Persicivirga dokdonensis comb. nov. and emended descriptions of the genus Persicivirga and of Persicivirga xylanidelens O'Sullivan et al. 2006. Int J Syst Evol Microbiol 59:824–827

    Article  CAS  PubMed  Google Scholar 

  54. Ivanova EP, Bakunina IY, Nedashkovskaya OI, Gorshkova NM, Alexeeva YV, Zelepuga EA, Zvaygintseva TN, Nicolau DV, Mikhailov VV (2003) Ecophysiological variabilities in ectohydrolytic enzyme activities of some Pseudoalteromonas species, P. citrea, P. issachenkonii, and P. nigrifaciens. Curr Microbiol 46:6–10

    Article  CAS  PubMed  Google Scholar 

  55. Raguenes G, Moppert X, Richert L, Ratiskol J, Payri C, Costa B, Guezennec J (2004) A novel exopolymer-producing bacterium, Paracoccus zeaxanthinifaciens subsp. payriae, isolated from a "kopara" mat located in Rangiroa, an atoll of French Polynesia. Curr Microbiol 49:145–151

    Article  CAS  PubMed  Google Scholar 

  56. Nithya C, Begum MF, Pandian SK (2010) Marine bacterial isolates inhibit biofilm formation and disrupt mature biofilms of Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol 88:341–358

    Article  CAS  PubMed  Google Scholar 

  57. Tujula NA, Crocetti GR, Burke C, Thomas T, Holmstrom C, Kjelleberg S (2010) Variability and abundance of the epiphytic bacterial community associated with a green marine Ulvacean alga. ISME J 4:301–311

    Article  PubMed  Google Scholar 

  58. Teasdale ME, Donovan KA, Forschner-Dancause SR, Rowley DC (2011) Gram-positive marine bacteria as a potential resource for the discovery of quorum sensing inhibitors. Mar Biotechnol (N Y) 13:722–732

    Article  CAS  Google Scholar 

  59. Dang H, Lovell CR (2000) Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl Environ Microbiol 66:467–475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Bermont-Bouis D, Janvier M, Grimont PA, Dupont I, Vallaeys T (2007) Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel. J Appl Microbiol 102:161–168

    Article  CAS  PubMed  Google Scholar 

  61. Boudaud N, Coton M, Coton E, Pineau S, Travert J, Amiel C (2010) Biodiversity analysis by polyphasic study of marine bacteria associated with biocorrosion phenomena. J Appl Microbiol 109:166–179

    CAS  PubMed  Google Scholar 

  62. Gartner A, Blumel M, Wiese J, Imhoff JF (2011) Isolation and characterisation of bacteria from the Eastern Mediterranean deep sea. Anton Leeuw 100:421–435

    Article  Google Scholar 

  63. Bellou N, Papathanassiou E, Dobretsov S, Lykousis V, Colijn F (2012) The effect of substratum type, orientation and depth on the development of bacterial deep-sea biofilm communities grown on artificial substrata deployed in the Eastern Mediterranean. Biofouling 28:199–213

    Article  PubMed  Google Scholar 

  64. Hagström Å, Pommier T, Rohwer F, Simu K, Stolte W, Svensson D, Zweifel UL (2002) Use of 16S ribosomal DNA for delineation of marine bacterioplankton species. Appl Environ Microbiol 68:3628–3633

    Article  PubMed Central  PubMed  Google Scholar 

  65. Polymenakou PN, Lampadariou N, Mandalakis M, Tselepides A (2009) Phylogenetic diversity of sediment bacteria from the southern Cretan margin, Eastern Mediterranean Sea. Syst Appl Microbiol 32:17–26

    Article  CAS  PubMed  Google Scholar 

  66. Jones P, Cottrell M, Kirchman D, Dexter S (2007) Bacterial community structure of biofilms on artificial surfaces in an estuary. Microb Ecol 53:153–162

    Article  PubMed  Google Scholar 

  67. Lee JK, Kwon K-K, Cho KH, Kim HW, Park JH, Lee HK (2003) Culture and identification of bacteria from marine biofilms. J Microbiol Methods 41:183–188

    CAS  Google Scholar 

  68. Webster NS, Negri AP (2006) Site-specific variation in Antarctic marine biofilms established on artificial surfaces. Environ Microbiol 8:1177–1190

    Article  CAS  PubMed  Google Scholar 

  69. Elifantz H, Horn G, Ayon M, Cohen Y, Minz D (2013) Rhodobacteraceae are the key members of the microbial community of the initial biofilm formed in Eastern Mediterranean coastal seawater. FEMS Microbiol Ecol 85:348–357

    Article  CAS  PubMed  Google Scholar 

  70. Nichols CM, Lardiere SG, Bowman JP, Nichols PD, Gibson JAE, Guezennec J (2005) Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Microb Ecol 49:578–589

    Article  CAS  PubMed  Google Scholar 

  71. Bozal N, Montes MJ, Tudela E, Jimenez F, Guinea J (2002) Shewanella frigidimarina and Shewanella livingstonensis sp. nov. isolated from Antarctic coastal areas. Int J Syst Evol Microbiol 52:195–205

    Article  CAS  PubMed  Google Scholar 

  72. Gentile G, Bonasera V, Amico C, Giuliano L, Yakimov MM (2003) Shewanella sp. GA-22, a psychrophilic hydrocarbonoclastic antarctic bacterium producing polyunsaturated fatty acids. J Appl Microbiol 95:1124–1133

    Article  CAS  PubMed  Google Scholar 

  73. Junge K, Imhoff F, Staley T, Deming W (2002) Phylogenetic diversity of numerically important Arctic Sea-ice bacteria cultured at subzero temperature. Microb Ecol 43:315–328

    Article  CAS  PubMed  Google Scholar 

  74. Gonzalez JM, Fernandez-Gomez B, Fernandez-Guerra A, Gomez-Consarnau L, Sanchez O, Coll-Llado M, Del Campo J, Escudero L, Rodriguez-Martinez R, Alonso-Saez L, Latasa M, Paulsen I, Nedashkovskaya O, Lekunberri I, Pinhassi J, Pedros-Alio C (2008) Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria). Proc Natl Acad Sci U S A 105:8724–8729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Gomez-Consarnau L, Gonzalez JM, Coll-Llado M, Gourdon P, Pascher T, Neutze R, Pedros-Alio C, Pinhassi J (2007) Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445:210–213

    Article  CAS  PubMed  Google Scholar 

  76. Jarrell KF, McBride MJ (2008) The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol 6:466–476

    Article  CAS  PubMed  Google Scholar 

  77. Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8:634–644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Basson A, Flemming LA, Chenia HY (2008) Evaluation of adherence, hydrophobicity, aggregation, and biofilm development of Flavobacterium johnsoniae-like isolates. Microb Ecol 55:1–14

    Article  CAS  PubMed  Google Scholar 

  79. Jacobs A, Chenia HY (2009) Biofilm-forming capacity, surface hydrophobicity and aggregation characteristics of Myroides odoratus isolated from South African Oreochromis mossambicus fish. J Appl Microbiol 107:1957–1966

    Article  CAS  PubMed  Google Scholar 

  80. Caccavo F, Schamberger PC, Keiding K, Nielsen PH (1997) Role of hydrophobicity in adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga to amorphous Fe(III) oxide. Appl Environ Microbiol 63:3837–3843

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Korenevsky A, Beveridge TJ (2007) The surface physicochemistry and adhesiveness of Shewanella are affected by their surface polysaccharides. Microbiology 153:1872–1883

    Article  CAS  PubMed  Google Scholar 

  82. Rouxhet P, Mozes N (1990) Physical-chemistry of the interface between attached microorganisms and their support. Water Sci Technol 22:1–16

    CAS  Google Scholar 

  83. Thomas V, Casson N, Greub G (2007) New Afipia and Bosea strains isolated from various water sources by amoebal co-culture. Syst Appl Microbiol 30:572–579

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Université de Toulon Research BQR funding. F. Brian-Jaisson is the recipient of a French PACA Region doctoral fellowship. We wish to thank V. Stenger, a Master student, for his contribution to this work. We also thank the Laboratoire de Biotechnologie et Chimie Marines of the Université de Bretagne-Sud, France for sending us the Paracoccus 4M6 strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maëlle Molmeret.

Supplementary materials

Below is the link to the electronic supplementary material.

Table S1

Results of the API ZYM gallery. This assay allows the determination of enzymatic activities of strains in the culture medium +:strong enzymatic activity. Int: intermediate enzymatic activity. -: weak or no enzymatic activity. (DOCX 16 kb)

Table S2

Results of API 20 NE and API 50 CH tests. For all strains, in API 50 CH and API 20 NE tests, only differences are shown, the majority of the results being negative. In the API 20 NE, the indole production, the fermentation of glucose, urease and the assimilation of glucose, arabinose, mannose, mannitol, N-acetyl-glucosamine, maltose, gluconate, caprate, adipate, malate, citrate and phenyl-acetate were negative. In the API 50 CH test, fermentation of the 40 others sugars was negative for all strains.+: positive reaction. Int: weakly positive reaction. -: negative reaction. (DOCX 19.6 KB)

Table S3

Zeta potential measurements of each strain in 1.5mM NaCl solution at pH 7.5. Each measurement was repeated three times with three independent cultures (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brian-Jaisson, F., Ortalo-Magné, A., Guentas-Dombrowsky, L. et al. Identification of Bacterial Strains Isolated from the Mediterranean Sea Exhibiting Different Abilities of Biofilm Formation. Microb Ecol 68, 94–110 (2014). https://doi.org/10.1007/s00248-013-0342-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0342-9

Keywords

Navigation